skip to main content

Modelling Based Analysis and Optimization of Simultaneous Saccharification and Fermentation for the Production of Lignocellulosic-Based Xylitol

1Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung , Indonesia

2Center for Catalysis and Reaction Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

3Department of Food Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Kampus Jatinangor, Sumedang, Indonesia

Received: 24 Jul 2021; Revised: 10 Sep 2021; Accepted: 12 Sep 2021; Published: 20 Dec 2021; Available online: 20 Sep 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Simultaneous saccharification and fermentation (SSF) configuration offers efficient use of the reactor. In this configuration, both hydrolysis and fermentation processes are conducted simultaneously in a single bioreactor, and the overall processes may be accelerated. However, problems may arise if both processes have different optimum conditions, and therefore process optimization is required. This paper presents a mathematical model over SSF strategy implementation for producing xylitol from the hemicellulose component of lignocellulosic materials. The model comprises the hydrolysis of hemicellulose and the fermentation of hydrolysate into xylitol. The model was simulated for various process temperatures, prior hydrolysis time, and inoculum concentration. Simulation of the developed kinetics model shows that the optimum SSF temperature is 36 °C, whereas conducting prior hydrolysis at its optimum hydrolysis temperature will further shorten the processing time and increase the xylitol productivity. On the other hand, increasing the inoculum size will shorten the processing time further. For an initial xylan concentration of 100 g/L, the best condition is obtained by performing 21-hour prior hydrolysis at 60 °C, followed by SSF at 36 °C by adding 2.0 g/L inoculum, giving 46.27 g/L xylitol within 77 hours of total processing time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: lignocellulose; modelling; simultaneous saccharification and fermentation; SSF; xylitol
Funding: Ministry of Research, Technology and Higher Education Republic of Indonesia under contract PMDSU support grant numbers 0017y/I1.C06/PL/2019

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Nayak, P.A., Nayak, U.A., Khandelwal, V. (2014). The effect of xylitol on dental caries and oral flora. Clin. Cosmet. Investig. Dent., 6, 89–94. DOI: 10.2147/CCIDE.S55761
  2. Mäkinen, K.K. (2010). Sugar Alcohols, Caries Incidence, and Remineralization of Caries Lesions: A Literature Review. Int. J. Dent., 2010, 1–23. DOI: 10.1155/2010/981072
  3. Ramesh, S., Muthuvelayudham, R., Rajesh Kannan, R., Viruthagiri, T. (2013). Enhanced production of xylitol from corncob by Pachysolen tannophilus using response surface methodology. Int. J. Food Sci., 2013, 1-8. DOI: 10.1155/2013/514676
  4. Aranda-Barradas, J.S., Garibay-Orijel, C., Badillo-Corona, J.A., Salgado-Manjarrez, E. (2010). A stoichiometric analysis of biological xylitol production. Biochem. Eng. J., 50, 1–9. DOI: 10.1016/j.bej.2009.10.023
  5. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., Murtaza, M.A. (2015). Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Crit. Rev. Food Sci. Nutr., 55, 1514–1528. DOI: 10.1080/10408398.2012.702288
  6. Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q. (2012). Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresour. Technol., 121, 369–378. DOI: 10.1016/j.biortech.2012.07.020
  7. Anil, N., Sudarshan, K., Naidu, N.N., Ahmed, M. (2016). Production of Xylose from Corncobs. Int. J. Eng. Res. Appl., 6, 77–84
  8. Cortez, D.V., Roberto, I.C. (2010). Improved xylitol production in media containing phenolic aldehydes: Application of response surfacemethodology for optimization and modeling of bioprocess. J. Chem. Technol. Biotechnol., 85, 33–38. DOI: 10.1002/jctb.2265
  9. Sun, J., Liu, H. (2011). Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts. Green Chem., 13, 135–142. DOI: 10.1039/c0gc00571a
  10. Huang, Z., Chen, J., Jia, Y., Liu, H., Xia, C., Liu, H. (2014). Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts. Appl. Catal. B Environ., 147, 377–386. DOI: 10.1016/j.apcatb.2013.09.014
  11. Gowda, J.I., Nandibewoor, S.T. (2012). Mechanism of oxidation of xylitol by a new oxidant, diperiodatoargentate (III), in aqueous alkaline medium. Synth. React. Inorganic, Met. Nano-Metal Chem., 42, 1183–1191. DOI: 10.1080/15533174.2012.684261
  12. Srivastava, A., Bansal, S. (2015). Kinetics and Mechanism of Ru(III) Catalysed Oxidation of Xylitol by Chloramine-T in Perchloric Acid Medium. International Journal of Chemical and Physical Sciences, 4, 39–48
  13. Baudel, H.M., de Abreu, C.A.M., Zaror, C.Z. (2005). Xylitol production via catalytic hydrogenation of sugarcane bagasse dissolving pulp liquid effluents over Ru/C catalyst. J. Chem. Technol. Biotechnol., 80, 230–233. DOI: 10.1002/jctb.1155
  14. Delgado Arcaño, Y., Valmaña García, O.D., Mandelli, D., Carvalho, W.A., Magalhães Pontes, L.A. (2020). Xylitol: A review on the progress and challenges of its production by chemical route. Catal. Today., 344, 2–14. DOI: 10.1016/j.cattod.2018.07.060
  15. Rafiqul, I.S.M., Sakinah, A.M.M. (2013). Processes for the Production of Xylitol-A Review. Food Rev. Int., 29, 127–156. DOI: 10.1080/87559129.2012.714434
  16. Dasgupta, D., Bandhu, S., Adhikari, D.K., Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiol. Res., 197, 9–21. DOI: 10.1016/j.micres.2016.12.012
  17. Kresnowati, M., Mardawati, E., Setiadi, T. (2015). Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept. Mod. Appl. Sci., 9, 206. DOI: 10.5539/mas.v9n7p206
  18. Burhan, K.H., Kresnowati, M.T.A.P., Setiadi, T. (2019). Evaluation of simultaneous saccharification and fermentation of oil palm empty fruit bunches for xylitol production. Bull. Chem. React. Eng. Catal., 14, 559–567. DOI: 10.9767/bcrec.14.3.3754.559-567
  19. Wyman, C.E., Spindler, D.D., Grohmann, K. (1992). Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass and Bioenergy, 3, 301–307. DOI: 10.1016/0961-9534(92)90001-7
  20. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J. Ind. Microbiol. Biotech., 25, 184–192. DOI: 10.1038/sj.jim.7000054
  21. Shen, J., Agblevor, F.A. (2010). Modeling semi-simultaneous saccharification and fermentation of ethanol production from cellulose. Biomass and Bioenergy, 34, 1098–1107 . DOI: 10.1016/j.biombioe.2010.02.014
  22. Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P., Ballesteros, I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem., 39, 1843–1848. DOI: 10.1016/j.procbio.2003.09.011
  23. Tomás-Pejó, E., Oliva, J.M., Ballesteros, M., Olsson, L.: Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng., 100, 1122–1131. DOI: 10.1002/bit.21849
  24. Gonçalves, F.A., Ruiz, H.A., Nogueira, C.D.C., Dos Santos, E.S., Teixeira, J.A., De Macedo, G.R. (2014). Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel, 131, 66–76. DOI: 10.1016/j.fuel.2014.04.021
  25. Mardawati, E., Werner, A., Bley, T., Kresnowati, M.T.A.P., Setiadi, T. (2014). The Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunches to Xylose. J. Japan Inst. Energy., 93, 973–978. DOI: 10.3775/jie.93.973
  26. Meilany, D., Mardawati, E., Tri, M., Penia, A., Setiadi, T. (2017). Kinetic Study of Oil Palm Empty Fruit Bunch Enzymatic Hydrolysis. Reaktor, 17, 197–202. DOI: 10.14710/reaktor.17.4.197-202
  27. Sampaio, F.C., De Moraes, C.A., De Faveri, D., Perego, P., Converti, A., Passos, F.M.L. (2006). Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Process Biochem., 41, 675–681. DOI: 10.1016/j.procbio.2005.08.019
  28. Sánchez, S., Bravo, V., Moya, A.J., Castro, E., Camacho, F. (2004). Influence of temperature on the fermentation of D-xylose by Pachysolen tannophilus to produce ethanol and xylitol. Process Biochem., 39, 673–679. DOI: 10.1016/S0032-9592(03)00139-0
  29. Gummadi, S.N., Kumar, S. (2008). Effects of temperature and salts on growth of halotolerant Debaryomyces nepalensis NCYC 3413. American Journal of Food Technology, 3(6), 345-360. DOI: .10.3923/ajft.2008.354.360
  30. Mohamad, N.L., Mustapa Kamal, S.M., Gliew, A. (2009). Effects of temperature and pH on xylitol recovery from oil palm empty fruit bunch hydrolysate by Candida tropicalis. Journal of Applied Sciences, 9(17), DOI: 10.3923/jas.2009.3192.3195
  31. Barbosa, M.F.S., de Medeiros, M.B., de Mancilha, I.M., Schneider, H., Lee, H. (1988). Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii. J. Ind. Microbiol., 3, 241–251. DOI: 10.1007/BF01569582
  32. Gulati, M., Kohlmann, K., Ladisch, M.R., Hespell, R., Bothast, R.J. (2996). Assessment of ethanol production options for corn products. Bioresour. Technol., 58, 253–264. DOI: 10.1016/S0960-8524(96)00108-3
  33. Shuler, M.L., Kargi, F. (2002). Bioprocess Engineering Basic Concepts. Prentice hall PTR, New Jersey (NJ)
  34. Villadsen, J., Nielsen, J., Liden, G. (2011). Bioreaction Engineering Principles. Springer, New York
  35. Hidayatullah, I.M., Setiadi, T., Kresnowati, M.T.A.P., Boopathy, R. (2020). Xylanase inhibition by the derivatives of lignocellulosic material. Bioresour. Technol., 300, 122740. DOI: 10.1016/j.biortech.2020.122740
  36. Duarte, L.C., Carvalheiro, F., Neves, I., Girio, F.M. (2005). Effects of Aliphatic Acids, Furfural, and Phenolic Compounds on Debaryomyces hansenii CCMI 941. Appl. Biochem. Biotechnol., 121–124, 413–425. DOI: 10.1007/978-1-59259-991-2_36
  37. Sampaio, F.C., Torre, P., Passos, F.M.L., De Moraes, C.A., Perego, P., Converti, A. (2007). Influence of inhibitory compounds and minor sugars on xylitol production by Debaryomyces hansenii. Appl. Biochem. Biotechnol., 136, 165–181. DOI: 10.1007/BF02686021
  38. Wannawilai, S., Chisti, Y., Sirisansaneeyakul, S. (2017). A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food Bioprod. Process., 105, 129–140. DOI: 10.1016/j.fbp.2017.07.002
  39. Pappu, J.S.M., Gummadi, S.N. (2016). Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models. Bioresour. Technol., 220, 490–499. DOI: 10.1016/j.biortech.2016.08.097
  40. Dominguez, J.M., Cheng, S.G., Tsao, G.T. (1997). Production of xylitol from D-xylose by debaryomyces hansenii. Appl. Biochem. Biotechnol., 63–65, 117–127. DOI: 10.1007/BF02920418
  41. Breuer, U., Harms, H. (2006). Debaryomyces hansenii - An extremophilic yeast with biotechnological potential. Yeast, 23, 415–437. DOI: 10.1002/yea.1374
  42. Converti, A., Perego, P., Domínguez, J.M., Silva, S.S. (2001). Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzyme Microb. Technol., 28, 339–345. DOI: 10.1016/S0141-0229(00)00330-6
  43. Bajpai, P. (2014). Chapter 2 - Xylan: Occurrence and Structure. In: Bajpai, P. (ed.) Xylanolytic Enzymes. pp. 9–18. Academic Press, Amsterdam
  44. Mardawati, E., Maharani, N., Wira, D.W., Harahap, B.M., Yuliana, T., Sukarminah, E. (2020). Xylitol Production from Oil Palm Empty Fruit Bunches (OPEFB) Via Simultaneous Enzymatic Hydrolysis and Fermentation Process. J. Ind. Inf. Technol. Agric., 2, 29–36. DOI: 10.24198/jiita.v2i1.25064
  45. Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., Zacchi, G. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem., 42, 834–839. DOI: 10.1016/j.procbio.2007.02.003
  46. Mardawati, E., Trirakhmadi, A., Kresnowati, M., Setiadi, T. (2017). Kinetic study on Fermentation of xylose for The Xylitol Production. J. Ind. Inf. Technol. Agric., 1, 1–6. DOI: 10.24198/jiita.v1i1.12214
  47. Josefa K.M., Alejandro, B., Juan P.A., Isabel, O., Andres, V., Mario, A. (2018). Biotechnological Production of Xylitol from Oil Palm Empty Fruit Bunches Hydrolysate. Adv. J. Food Sci. Technol., 16, 134–137. DOI: 10.19026/ajfst.16.5945
  48. Zhou, J., Liu, Y., Shen, J., Zhang, R., Tang, X., Li, J., Wang, Y., Huang, Z. (2015). Kinetic and thermodynamic characterization of a novel low-temperature-active xylanase from Arthrobacter sp. GN16 isolated from the feces of Grus nigricollis. Bioengineered., 6, 111–114. DOI: 10.1080/21655979.2014.1004021

Last update:

No citation recorded.

Last update:

No citation recorded.