skip to main content

Bimetallic CoMo Nanoparticles Supported over Carbon-Zeolite Composites as Dibenzothiophene Hydrodesulfurization Catalyst

1Department of Physical and Computational Chemistry, Faculty of Chemistry Science and Petroleum, Shahid Beheshti University, Tehran, Iran, Islamic Republic of

2Department of Applied Chemistry, Kosar University of Bojnord, North Khorasan, Iran, Islamic Republic of

Received: 12 Jul 2021; Revised: 5 Sep 2021; Accepted: 6 Sep 2021; Published: 20 Dec 2021; Available online: 7 Sep 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Cobalt molybdenum catalysts supported on novel activated carbon-HZSM-5 composites with different mass ratios were prepared by wet-impregnation method and pre-sulfided by CS2. Characterization of these catalysts was done using X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption, and scanning electron microscope analytics. Their activity for the hydrodesulfurization reaction of dibenzothiophene was investigated at atmospheric pressure in the temperature range of 250–400 °C using the fixed-bed reactor with 0.5 g of each powder and pre-sulfided with CS2. The highest conversion of dibenzothiophene at the temperature range of 300–400 °C was obtained for the CoMo/activated carbon-HZSM-5(1:1) catalyst. The best selectivity for cyclohexylbenzene, which is the dominant product according to gas chromatography results, was obtained at all temperatures using CoMo/activated carbon-HZSM-5(3:1) catalyst. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: Co-Mo Nanoparticles; Hydrodesulfurization; Activated Carbon-HZSM-5; Dibenzothiophene
Funding: BCREC Groups

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Furimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199, 147–190. DOI: 10.1016/S0926-860X(99)00555-4
  2. Hernández‐Maldonado, A.J., Yang, R.T. (2004). Desulfurization of transportation fuels by adsorption. Catalysis Reviews, 46, 111–150. DOI: 10.1081/CR-200032697
  3. Song, S., Yang, X., Wang, B., Zhou, X., Duan, A., Chi, K., Zhao, Z., Xu, C., Chen, Z., Li, J. (2017). Al-modified mesocellular silica foam as a superior catalyst support for dibenzothiophene hydrodesulfurization. Chinese Journal of Catalysis, 38, 1347–1359. DOI: 10.1016/S1872-2067(17)62867-5
  4. Klimov, O.V., Pashigreva, A.V., Fedotov, M.A., Kochubey, D.I., Chesalov, Y.A., Bukhtiyarova, G.A., Noskov, A.S. (2010). Co–Mo catalysts for ultra-deep HDS of diesel fuels prepared via synthesis of bimetallic surface compounds. Journal of Molecular Catalysis A: Chemical, 322, 80–89. DOI: 10.1016/j.molcata.2010.02.020
  5. Dominguez-Crespo, M.A., Torres-Huerta, A.M., Díaz-García, L., Arce-Estrada, E.M., Ramírez-Meneses, E. (2008). HDS, HDN and HDA activities of nickel–molybdenum catalysts supported on alumina. Fuel Processing Technology, 89, 788–796. DOI: 10.1016/j.fuproc.2008.01.004
  6. Egorova, M., Prins, R. (2006). The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/γ-Al2O3 catalysts. Journal of Catalysis, 241, 162–172. DOI: 10.1016/j.jcat.2006.04.011
  7. Dhar, G.M., Rana, M.S., Maity, S.K., Srinivas, B.N., Rao, T.P. (2000). Performance of Mo catalysts supported on TiO2-based binary supports for distillate fuel hydroprocessing. In Chemistry of Diesel Fuels, Taylor & Francis, New York, 157
  8. Topsøe, H., Clausen, B.S., Massoth, F.E., Anderson, J.R., Boudart, M. (1996). Catalysis science and technology. Hydrotreating Catalysis, 11, 310
  9. Polz, J., Zeilinger, H., Müller, B., Knözinger, H. (1989). Hydrogen uptake by MoS2 and sulfided alumina-supported Mo catalysts. Journal of Catalysis, 120, 22–28. DOI: 10.1016/0021-9517(89)90247-9
  10. Maity, S.K., Rana, M.S., Srinivas, B.N., Bej, S.K., Dhar, G.M., Rao, T.P. (2000). Characterization and evaluation of ZrO2 supported hydrotreating catalysts. Journal of Molecular Catalysis A: Chemical, 153, 121–127. DOI: 10.1016/S1381-1169(99)00311-8
  11. Hajjar, Z., Kazemeini, M., Rashidi, A., Soltanali, S. (2018). Hydrodesulfurization catalysts based on carbon nanostructures: A review. Fullerenes, Nanotubes and Carbon Nanostructures, 26, 557–569. DOI: 10.1080/1536383X.2018.1470509
  12. Choi, J.S., Maugé, F., Pichon, C., Olivier-Fourcade, J., Jumas, J.C., Petit-Clair, C., Uzio, D. (2004). Alumina-supported cobalt–molybdenum sulfide modified by tin via surface organometallic chemistry: application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins. Applied Catalysis A: General, 267, 203–216. DOI: 10.1016/j.apcata.2004.03.005
  13. Parsafard, N., Peyrovi, M.H., Parsafard, N. (2017). Influence of HZSM-5 content on behavior of CoMo/HZSM5-HMS composite catalysts in hydrodesulphurization of dibenzothiophene. Journal of the Iranian Chemical Society, 14, 1489–1495. DOI: 10.1007/s13738-017-1089-x
  14. Wu, H., Duan, A., Zhao, Z., Li, T., Prins, R., Zhou, X. (2014). Synthesis of NiMo hydrodesulfurization catalyst supported on a composite of nano-sized ZSM-5 zeolite enwrapped with mesoporous KIT-6 material and its high isomerization selectivity. Journal of Catalysis, 317, 303–317. DOI: 10.1016/j.jcat.2014.07.002
  15. Zhang, H., Han, L., Duan, A., Xu, C., Zhao, Z., Wei, Y., Jiang, G., Liu, J., Wang, D., Xia, Z. (2017). Synthesis of micro-mesoporous materials ZSM-5/FDU-12 and the performance of dibenzothiophene hydrodesulfurization. RSC Advances, 7, 28038–28047. DOI: 10.1039/C7RA03679E
  16. Parsafard, N., Peyrovi, M.H., Mohammadian, Z., Atashi, N. (2020). Activity evaluation of CoMo Nanoparticles supported on meso-microporous composites in dibenzothiophene hydrodesulphurization. Bulletin of Chemical Reaction Engineering & Catalysis. 15, 112–118. DOI: 10.9767/bcrec.15.1.5556.112-118
  17. Al-Hammadi, S.A., Al-Amer, A.M., Saleh, T.A. (2018). Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions. Chemical Engineering Journal, 345, 242–251. DOI: 10.1016/j.cej.2018.03.106
  18. Soni, K., Rana, B.S., Sinha, A.K., Bhaumik, A., Nandi, M., Kumar, M., Dhar, G.M. (2009). 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Applied Catalysis B: Environmental, 90, 55–63. DOI: 10.1016/j.apcatb.2009.02.010
  19. Mohammadian, Z., Peyrovi, M.H., Parsafard, N. (2018). Catalytic performance and kinetics study over novel Ni/activated carbon‐FSM‐16 catalysts in the BTX mixture for benzene selective hydrogenation. ChemistrySelect, 3, 12639–12644. DOI: 10.1002/slct.201802760
  20. Baikousi, M., Dimos, K., Bourlinos, A.B., Zbořil, R., Papadas, I., Deligiannakis, Y., Karakassides, M.A. (2012). Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Applied Surface Science, 258, 3703–3709. DOI: 10.1016/j.apsusc.2011.12.010
  21. Veerapandian, M., Lévaray, N., Lee, M.H., Giasson, S., Zhu, X.X. (2015). Glucosamine-anchored graphene oxide nanosheets: fabrication, ultraviolet irradiation, and electrochemical properties. ACS Applied Materials & Interfaces, 7, 14552–14556. DOI: 10.1021/acsami.5b00608
  22. Mojoudi, N., Mirghaffari, N., Soleimani, M., Shariatmadari, H., Belver, C., Bedia, J. (2019). Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies. Scientific Reports, 9, 1–12. DOI: 10.1038/s41598-019-55794-4
  23. Mohammadian, Z., Peyrovi, M.H., Parsafard, N. (2019). Catalytic performance and kinetics study of various carbonaceous supported nickel nanoparticles for atmospheric pressure competitive hydrogenation of benzene. Chemical Physics Letters, 715, 367–374. DOI: 10.1016/j.cplett.2018.12.003
  24. Xia, Y., Mokaya, R. (2004). On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. Journal of Materials Chemistry, 14, 863–870. DOI: 10.1039/B313389C
  25. Parsafard, N., Peyrovi, M.H., Rashidzadeh, M. (2014). n-Heptane isomerization on a new kind of micro/mesoporous catalyst: Pt supported on HZSM-5/HMS. Microporous and Mesoporous Materials, 200, 190–198. DOI: 10.1016/j.micromeso.2014.08.044
  26. Youming, N., Aiming, S., Xiaoling, W.U., Jianglin, H.U., Tao, L.I., Guangxing, L.I. (2011). Aromatization of methanol over La/Zn/HZSM-5 catalysts. Chinese Journal of Chemical Engineering, 19, 439–445. DOI: 10.1016/S1004-9541(11)60004-9
  27. Parsafard, N., Peyrovi, M.H., Parsafard, N. (2017). Influence of HZSM-5 content on behavior of CoMo/HZSM5-HMS composite catalysts in hydrodesulphurization of dibenzothiophene. Journal of the Iranian Chemical Society, 7, 1489–1495. DOI: 10.1007/s13738-017-1089-x
  28. Ganiyu, S.A., Alhooshani, K., Sulaiman, K.O., Qamaruddin, M., Bakare, I.A., Tanimu, A., Saleh, T.A. (2016). Influence of aluminium impregnation on activated carbon for enhanced desulfurization of DBT at ambient temperature: role of surface acidity and textural properties. Chemical Engineering Journal, 303, 489–500. DOI: 10.1007/s13738-017-1089-x
  29. Liu, X.Y., Huang, M., Ma, H.L., Zhang, Z.Q., Gao, J.M., Zhu, Y.L., Han, X.J., Guo, X.Y. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15, 7188–7196. DOI: 10.3390/molecules15107188
  30. Welters, W.J.J., De Beer, V.H.J., Van Santen, R.A. (1994). Influence of zeolite acidity on thiophene hydrodesulfurization activity. Applied Catalysis A: General, 119, 253–269. DOI: 10.1016/0926-860X(94)85195-6
  31. Laine, J., Labady, M., Severino, F., Yunes, S. (1997). Sink effect in activated carbon-supported hydrodesulfurization catalysts. Journal of Catalysis, 166(2), 384-287. DOI: 10.1006/jcat.1997.1507

Last update:

No citation recorded.

Last update:

No citation recorded.