skip to main content

Graphite/NiO/Ni Electrode for Electro-oxidation of the Remazol Black 5 Dye

1Department of Chemistry, Universitas Gadjah Mada, Yogyakarta , Indonesia

2Department of Chemistry, Universitas Pendidikan Ganesha, Singaraja, Indonesia

Received: 9 Jul 2021; Revised: 9 Sep 2021; Accepted: 10 Sep 2021; Published: 20 Dec 2021; Available online: 12 Sep 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Graphite/NiO/Ni electrode had been fabricated for the electro-oxidation of remazol black 5 dye. The electrode was synthesized by electrodeposition method. Electro-oxidation of 100 ppm remazol black 5 dye was carried out at various concentrations of NaCl, 0.025; 0.05; 0.1; 0.25; and 0.5 M, variations in electro-oxidation time were 15, 30, 45, and 60 minutes, and pH variations were 4, 6, and 8. Cyclic voltammetry test revealed that graphite/NiO/Ni electrode had higher electrocatalytic capability compared to graphite electrode. The X-ray diffraction (XRD) patterns showed the decreasing value of 2θ from 44.6° for Ni to 43.5° for NiO. Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX) showed that NiO/Ni deposited on the graphite surface in the form of solid grains and cracks, FTIR showed that δ(Ni−O) bond appeared at 582–511 cm1. The decolorization efficiency of remazol black 5 for graphite/NiO/Ni electrode was 100% for 45 minutes of the electro-oxidation process, while the decolorization efficiency of remazol black 5 for graphite electrode was 99.74% for 60 minutes of the electro-oxidation process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: graphite/NiO/Ni; electro-oxidation; Remazol Black 5 dye
Funding: Ministry of Research and Higher Education Republic of Indonesai under contract BPPNDN S3 scholarship

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Kenova, T.A., Kornienko, G.V., Golubtsova, O.A., Kornienko, V.L., Maksimov, N.G. (2018). Electrochemical Degradation of Mordant Blue 13 Azo Dye Using Boron Doped Diamond and Dimensionally Stable Anodes: Influence of Experimental Parameters and Water Matrix. Environmental Science and Pollution Research, 25(30), 30425–30440. DOI: 10.1007/s11356-018-2977-z
  2. El-Kacemi, S., Zazou, H., Oturan, N., Dietze, M., Hamdani, M., Es-Souni, M., Oturan, M.A. (2017). Nanostructured ZnO-TiO2 Thin Film Oxide as Anode Material in Electrooxidation of Organic Pollutants. Application to The Removal of Dye Amido Black 10B from Water. Environmental Science and Pollution Research, 24(2), 1442–1449. DOI: 10.1007/s11356-016-7920-6
  3. Droguett, T., Gomes, J.M., Gabaldon, M.G., Ortega, E., Mestre, S., Cifuentes, G., Herranz, V.P. (2020). Electrochemical Degradation of Reactive Black 5 Using Two-different Reactor Configuration. Scientific Reports, 10(1), 1–11. DOI: 10.1038/s41598-020-61501-5
  4. Rahmadyanti, E., Febriyanti, C.P. (2020). Feasibility of Constructed Wetland Using Coagulation Flocculation Technology in Batik Wastewater Treatment. Journal of Ecological Engineering, 21(6), 67–77. DOI: 10.12911/22998993/123253
  5. Joe, J., Kothari, R.K., Raval, C.M., Kothari, C.R. (2011). Decolorization of Textile Dye Remazol Black B by Pseudomonas Aeruginosa CR-25 Isolated from The Common Effluent Treatment Plant. Journal of Bioremediation & Biodegradation, 02(02), 2-6. DOI: 10.4172/2155-6199.1000118
  6. Sulistiyo, Y.A., Andriana, N., Piluharto, B., Zulfikar, Z. (2017). Silica Gels from Coal Fly Ash as Methylene Blue Adsorbent: Isotherm and Kinetic Studies. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 263–272. DOI: 10.9767/bcrec.12.2.766.263-272
  7. Yusbarina, Y., Roto, R., Triyana, K. (2021). Hydroxyl Functionalized Graphene As a Superior Anode Material for Electrochemical Oxidation of Methylene Blue. Rasayan Journal of Chemistry, 14(2), 1140-1147. DOI: 10.31788/rjc.2021.1426180
  8. Kaur, P., Sangal, V.K., Kushwaha, J.P. (2015). Modeling and Evaluation of Electro-Oxidation of Dye Wastewater Using Artificial Neural Networks. Royal Society of Chemistry Advances, 5(44), 34663–34671. DOI: 10.1039/c4ra14160a
  9. Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L., Gallios, G. (2018). Degradation of Reactive Black 5 by Electrochemical Oxidation. Chemosphere, 190, 405–416. DOI: 10.1016/j.chemosphere.2017.09.126
  10. Migliorini, F.L., Steter, J.R., Rocha, R.S., Lanza, M.R.V., Baldan M.R., Ferreira, N.G. (2016). Efficiency Study and Mechanistic Aspects in The Brilliant Green Dye Degradation Using BDD/Ti Electrodes. Diamond & Related Materials, 65, 5–12. DOI: 10.1016/j.diamond.2015.12.013
  11. Brillas, E., Martínez-Huitle, C.A. (2015). Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review. Applied Catalysis B: Environmental, 166–167, 603–643. DOI: 10.1016/j.apcatb.2014.11.016
  12. Sirés, I., Brillas, E., Oturan, M.A., Rodrigo, M.A., Panizza, M. (2014). Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environmental Science and Polluttion Research, 21(14), 8336–8367. DOI: 10.1007/s11356-014-2783-1
  13. Martínez-Huitle, C.A., Dos Santos, E.V., De Araújo, D.M., Panizza, M. (2012). Applicability of Diamond Electrode/Anode to The Electrochemical Treatment of a Real Textile Effluent. Journal of Electroanalytical Chemistry, 674, 103–107. DOI: 10.1016/j.jelechem.2012.02.005
  14. Särkkä, H., Bhatnagar, A., Sillanpää, M. (2015). Recent Developments of Electro-oxidation in Water Treatment. A Review. Journal of Electroanalytical Chemistry, 754, 46–56. DOI: 10.1016/j.jelechem.2015.06.016
  15. Moreira, F.C., Boaventura, R.A.R., Brillas, E., Vilar, V.J.P. (2017). Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Applied Catalysis B: Environmental, 202, 217–261. DOI: 10.1016/j.apcatb.2016.08.037
  16. Oturan, M.A., Aaron, J.J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. DOI: 10.1080/10643389.2013.829765
  17. Kaur, P., Kushwaha, J.P., Sangal, V.K. (2017). Evaluation and Disposability Study of Actual Textile Wastewater Treatment by Electro-oxidation Method Using Ti/RuO2 Anode. Process Safety and Environmental Protection, 111, 13–22. DOI: 10.1016/j.psep.2017.06.004
  18. Peleyeju, M.G., Umukoro, E.H., Babalola, J.O., Arotiba, O.A. (2015). Electrochemical Degradation of an Anthraquinonic Dye on an Expanded Graphite-Diamond Composite Electrode. Electrocatalysis, 7(2), 132-139. DOI: 10.1007/s12678-015-0291-9
  19. Nordin, N., Amir, S.F.M., Riyanto, Othman, M.R. (2013). Textile Industries Wastewater Treatment by Electrochemical Oxidation Technique Using Metal Plate. International Journal of Electrochemical Science, 8(9), 11403–11415
  20. Alaoui, A., El Kacemi, K., El Ass, K., Kitane, S., El Bouzidi, S. (2015). Activity of Pt/MnO2 Electrode in The Electrochemical Degradation of Methylene Blue in Aqueous Solution. Separation and Purification Technology, 154, 281–289. DOI: 10.1016/j.seppur.2015.09.049
  21. Shestakova, M., Sillanpää, M. (2017). Electrode Materials Used for Electrochemical Oxidation of Organic Compounds in Wastewater. Reviews in Environmental Science and Biotechnology, 16(2), 223–238. DOI: 10.1007/s11157-017-9426-1
  22. Nidheesh, P.V., Gandhimathi, R. (2014). Removal of Rhodamine B from Aqueous Solution Using Graphite-graphite Electro-Fenton System. Desalination and Water Treatment, 52, 10–12, 1872–1877. DOI: 10.1080/19443994.2013.790321
  23. Basharat, F., Rana, U.A., Shahid, M., Serwar, M. (2015). Heat Treatment of Electrodeposited NiO Films for Improved Catalytic Water Oxidation. RSC Advances, 5(105), 86713–86722. DOI: 10.1039/c5ra17041a
  24. Dar, F.I., Moonooswamy, K.R., Es-Souni, M. (2013). Morphology and Property Control of NiO Nanostructures for Supercapacitor Applications. Nanoscale Research Letters, 8(1), 1–7. DOI: 10.1186/1556-276X-8-363
  25. Döner, A., Telli, E., Kardaş, G. (2012). Electrocatalysis of Ni-Promoted Cd Coated Graphite Toward Methanol Oxidation in Alkaline Medium. Journal of Power Sources, 205, 71–79. DOI: 10.1016/j.jpowsour.2012.01.020
  26. Zhang, J., Zhang, D., Liu, Y. (2019). Ni–SiO2 Nanoporous Composite as an Efficient Electrocatalyst for the Electrooxidation of Hydrogen Peroxide. Journal of Materials Science: Materials in Electronic, 30(15), 13895–13909. DOI: 10.1007/s10854-019-01707-0
  27. Mukimin, A., Vistanty, H., Zen, N. (2015). Oxidation of Textile Wastewater Using Cylinder Ti/β-PbO2 Electrode in Electrocatalytic Tube Reactor. Chemical Engineering Journal, 259, 430–437. DOI: 10.1016/j.cej.2014.08.020
  28. Popova, A.N. (2017). Crystallographic Analysis of Graphite by X-Ray Diffraction. Coke and Chemistry, 60(9), 361–365. DOI: 10.3103/S1068364X17090058
  29. Fan, M., Ren, B., Yang, X., Yu, H., Wang, L. (2019). NiO@NiO and NiO@Co3O4 Hollow Core/Shell Composites for High-Performance Supercapacitor Electrodes. Journal of Nanoscience and Nanotechnology, 19(12), 7785–7789. DOI: 10.1166/jnn.2019.16857
  30. Rebelo, Q.H.F., Ferreira, C.S., Santos, P.L., Bonacin, J.A., Passos, R.R., Pocrifka, L.A., Paula, M.M.S. (2019). Synthesis and Characterization of a Nanocomposite NiO/SiO2 from a Sustainable Source of SiO2. Particulate Science and Technology, 37(8), 907–911. DOI: 10.1080/02726351.2018.1455781
  31. Azaceta, E., Chavhan, S., Rossi, P., Paderi, M., Fantini, S., Ungureanu, M., Miguel, O., Grande, H.J., Tena-Zaera, R. (2012). NiO Cathodic Electrochemical Deposition from an Aprotic Ionic Liquid: Building Metal Oxide N-P Heterojunctions. Electrochimica Acta, 71, 39–43. DOI: 10.1016/j.electacta.2012.03.093
  32. Kariyajjanavar, P., Jogttappa, N., Nayaka, Y.A. (2011). Studies on Degradation of Reactive Textile Dyes Solution by Electrochemical Method. Journal of Hazardous Materials, 190(1–3), 952–961. DOI: 10.1016/j.jhazmat.2011.04.032
  33. Hajji, M., Baddouh, A., Rghuiti, M., Jbara, O., Tara, A., Bazzi, L., Benlhachemi, A., Hilali, M. (2015). Electrochemical Degradation of Some Organic Dyes by Electrochemical Oxidation on a Ti/Cu2O Electrode. Applied Journal of Environmental Engineering Science, 1(1), 1–8. DOI: 10.5004/dwt.2011.1926
  34. Patel, P.S., Bandre, N., Saraf, A., Ruparelia, J.P. (2013). Electro-Catalytic Materials (Electrode Materials) in Electrochemical Wastewater Treatment. Procedia Engineering, 51, 430–435. DOI: 10.1016/j.proeng.2013.01.060
  35. Nidheesh, P.V., Zhou, M., Oturan, M.A. (2018). An overview on The Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes. Chemosphere, 197, 210–227. DOI: 10.1016/j.chemosphere.2017.12.195
  36. Morsi, M.S., Al-Sarawy, A.A., Shehab El-Dein, W.A. (2011). Electrochemical Degradation of Some Organic Dyes by Electrochemical Oxidation on a Pb/PbO2 Electrode. Desalination and Water Treatment, 26, 301–308. DOI: 10/5004/dwt.2011.1926
  37. Gautam, R.K., Chattopadhyaya, M.C. (2016). Advanced Nanomaterials for Wastewater Remediation. Publisher: CRC Press. DOI: 10.1201/9781315368108-4
  38. Rivera, M., Pazos, M., Sanromán, M.Á. (2011). Development of an Electrochemical Cell for The Removal of Reactive Black 5. Desalination, 274 (1-3), 39–43. DOI: 10.1016/j.desal.2011.01.074

Last update:

No citation recorded.

Last update:

No citation recorded.