skip to main content

A New Approach for the Green Biosynthesis of Silver Oxide Nanoparticles Ag2O, Characterization and Catalytic Application

Physical-Chemistry of Processes and Materials Laboratory, Faculty of Science and Technology, Hassan First University of Settat, 26000 Settat, Morocco

Received: 28 Jun 2021; Revised: 14 Jul 2021; Accepted: 15 Jul 2021; Published: 30 Sep 2021; Available online: 17 Jul 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this paper, a facile and green approach for the synthesis of silver oxide nanoparticles Ag2O NPs was performed using the extract of the wild plant Herniaria hirsuta (H. hirsuta). Different spectral methods were used for the characterization of the biosynthesized Ag2O NPs, ultraviolet-visible (UV-Vis) spectroscopy gave a surface plasmon resonance (SPR) peak of Ag2O NPs is 430 nm, estimation of direct and indirect forbidden gap bands are respectively 3.76 eV and 3.68 eV; Fourier transform infrared (FTIR) spectral analysis revealed the groups responsible for the stability and synthesis of Ag2O NPs. The morphology of Ag2O NPs was studied by scanning electron microscopy (SEM) showing a nearly spherical shape of Ag2O NPs, and X-ray diffraction (XRD) study confirmed the crystallinity of Ag2O NPs with a crystallinity size of 15.51 nm. The catalytic activity of Ag2O NPs, as well as the rings number were studied by the degradation of methylene blue dye. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: Silver oxide Ag2O nanoparticles; Herniaria Hirsuta; Silver nitrate AgNO3; Dye degradation.
Funding: Centre for Research and Analysis and Characterisation (CRAC) Hassan First University of Settat

Article Metrics:

  1. Laouini, S.E., Bouafia, A., Soldatov, A.V., Algarni, H., Tedjani, M.L., Ali, G.A., Barhoum, A. (2021). Green Synthesized of Ag/Ag2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation. Membranes, 11(7), 468. DOI: 10.3390/membranes11070468
  2. Chuto, G., Chaumet-Riffaud, P. (2010). Les nanoparticules. Médecine Nucléaire, 34(6), 370-376. DOI: 10.1016/j.mednuc.2010.03.003
  3. Lateef, A., Folarin, B.I., Oladejo, S.M., Akinola, P.O., Beukes, L.S., Gueguim-Kana, E.B. (2018). Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Preparative Biochemistry and Biotechnology, 48(7), 646-652. DOI: 10.1080/10826068.2018.1479864
  4. Boopathi, S., Gopinath, S., Boopathi, T., Balamurugan, V., Rajeshkumar, R., Sundararaman, M. (2012). Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments. Industrial & Engineering Chemistry Research, 51(17), 5976-5985. DOI: 10.1021/ie3001869
  5. Li, R., Chen, Z., Ren, N., Wang, Y., Wang, Y., Yu, F. (2019). Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. Journal of Photochemistry and Photobiology B: Biology, 199, 111593. DOI: 10.1016/j.jphotobiol.2019.111593
  6. Ovais, M., Khalil, A.T., Islam, N.U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, Z.K., Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102(16), 6799-6814. DOI: 10.1007/s00253-018-9146-7
  7. Shanthi, S., Jayaseelan, B.D., Velusamy, P., Vijayakumar, S., Chih, C.T., Vaseeharan, B. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70-77. DOI: 10.1016/j.micpath.2016.01.014
  8. Ida, Y., Watase, S., Shinagawa, T., Watanabe, M., Chigane, M., Inaba, M., Tasaka, A., Izaki, M. (2008). Direct electrodeposition of 1.46 eV bandgap silver (I) oxide semiconductor films by electrogenerated acid. Chemistry of Materials, 20(4), 1254-1256. DOI: 10.1021/cm702865r
  9. Xaba, T., Moloto, M.J., Al-Shakban, M., Malik, M.A., O’Brien, P., Moloto, N. (2017). The effect of temperature on the growth of Ag2O nanoparticles and thin films from bis (2-hydroxy-1-naphthaldehydato) silver (I) complex by the thermal decomposition of spin–coated films. Materials Science in Semiconductor Processing, 71, 109-115. DOI: 10.1016/j.mssp.2017.07.015
  10. Torabi, S., Mansoorkhani, M.J.K., Majedi, A., Motevalli, S. (2020). Synthesis, medical and photocatalyst applications of nano-Ag2O. Journal of Coordination Chemistry, 73(13), 1861-1880. DOI: 10.1080/00958972.2020.1806252.
  11. Pan, J., Sun, Y., Wang, Z., Wan, P., Liu, X., Fan, M. (2007). Nano silver oxide (AgO) as a super high charge/discharge rate cathode material for rechargeable alkaline batteries. Journal of Materials Chemistry, 17(45), 4820-4825. DOI: 10.1039/B711373K
  12. Tominaga, J. (2003). The application of silver oxide thin films to plasmon photonic devices. Journal of Physics: Condensed Matter, 15(25), R1101. DOI: 10.1088/0953-8984/15/25/201
  13. Wren, S., Minelli, C., Pei, Y., Akhtar, N. (2020). Evaluation of particle size techniques to support the development of manufacturing scale nanoparticles for application in pharmaceuticals. Journal of Pharmaceutical Sciences, 109(7), 2284-2293. DOI: 10.1016/j.xphs.2020.04.001
  14. Russell, A.D., Hugo, W.B. (1994). 7 antimicrobial activity and action of silver. Progress in Medicinal Chemistry, 31, 351-370. DOI: 10.1016/s0079-6468(08)70024-9
  15. Esmaile, F., Koohestani, H., Abdollah-Pour, H. (2020). Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract. Environmental Nanotechnology, Monitoring & Management, 14, 100303. DOI: 10.1016/j.enmm.2020.100303
  16. Lateef, A., Folarin, B.I., Oladejo, S.M., Akinola, P.O., Beukes, L.S., Gueguim-Kana, E.B. (2018). Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Preparative Biochemistry and Biotechnology, 48(7), 646-652. DOI: 10.1080/10826068.2018.1479864
  17. Shah, A., Haq, S., Rehman, W., Waseem, M., Shoukat, S., Rehman, M.U. (2019). Photocatalytic and antibacterial activities of paeonia emodi mediated silver oxide nanoparticles. Materials Research Express, 6(4), 045045. DOI: 10.1088/2053-1591/aafd42
  18. Rashmi, B.N., Harlapur, S.F., Avinash, B., Ravikumar, C.R., Nagaswarupa, H.P., Kumar, M.R.A., Gurushantha, K., Santosh, M.S. (2020). Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorganic Chemistry Communications, 111, 107580. DOI: 10.1016/j.inoche.2019.107580
  19. Ravichandran, S., Paluri, V., Kumar, G., Loganathan, K., Kokati Venkata, B.R. (2016). A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. Journal of Experimental Nanoscience, 11(6), 445-458. DOI: 10.1080/17458080.2015.1077534
  20. Manikandan, V., Velmurugan, P., Park, J.H., Chang, W.S., Park, Y.J., Jayanthi, P., Cho, M., Oh, B.T. (2017). Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech, 7(1), 72. DOI: 10.1007/s13205-017-0670-4
  21. Menon, S., Rajeshkumar, S., Kumar, V. (2017). A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies, 3(4), 516-527. DOI: 10.1016/j.reffit.2017.08.002
  22. Samuel, M.S., Jose, S., Selvarajan, E., Mathimani, T., Pugazhendhi, A. (2020). Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. Journal of Photochemistry and Photobiology B: Biology, 202, 111642. DOI: 10.1016/j.jphotobiol.2019.111642
  23. Rajendran, K., Karunagaran, V., Mahanty, B., Sen, S. (2015). Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. International Journal of Biological Macromolecules, 74, 376-381. DOI: 10.1016/j.ijbiomac.2014.12.028
  24. Wang, L., Hu, C., Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227. DOI: 10.2147/IJN.S121956
  25. Fairuzi, A.A., Bonnia, N.N., Akhir, R.M., Abrani, M.A., Akil, H.M. (2018). Degradation of methylene blue using silver nanoparticles synthesized from imperata cylindrica aqueous extract. IOP Conference Series: Earth and Environmental Science, 105(1), 012018. DOI: 10.1088/1755-1315/105/1/012018
  26. Adeyi, A.A., Jamil, S.N.A.M., Abdullah, L.C., Choong, T.S.Y., Lau, K.L., Abdullah, M. (2019). Adsorptive removal of methylene blue from aquatic environments using thiourea-modified poly (acrylonitrile-co-acrylic acid). Materials, 12(11), 1734. DOI: 10.3390/ma12111734
  27. Mantasha, I., Saleh, H.A., Qasem, K.M., Shahid, M., Mehtab, M., Ahmad, M. (2020). Efficient and selective adsorption and separation of methylene blue (MB) from mixture of dyes in aqueous environment employing a Cu (II) based metal organic framework. Inorganica Chimica Acta, 511, 119787. DOI: 10.1016/j.ica.2020.119787
  28. Ammor, K., Bousta, D., Jennan, S., Bennani, B., Chaqroune, A., Mahjoubi, F. (2018). Phytochemical Screening, Polyphenols Content, Antioxidant Power, and Antibacterial Activity of Herniaria hirsuta from Morocco. The Scientific World Journal, 2018, 7470384. DOI: 10.1155/2018/7470384
  29. Dhoondia, Z.H., Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2, 15. DOI: 10.5772/55741
  30. De, A.K., Majumdar, S., Pal, S., Kumar, S., Sinha, I. (2020). Zn doping induced band gap widening of Ag2O nanoparticles. Journal of Alloys and Compounds, 832, 154127. DOI: 10.1016/j.jallcom.2020.154127
  31. Liu, Y., Li, P., Xue, R., Fan, X. (2020). Research on catalytic performance and mechanism of Ag2O/ZnO heterostructure under UV and visible light. Chemical Physics Letters, 746, 137301. DOI: 10.1016/j.cplett.2020.137301
  32. Mohamed, R.M., Ismail, A.A., Kadi, M.W., Alresheedi, A.S., Mkhalid, I.A. (2020). Facile Synthesis of Mesoporous Ag2O–ZnO Heterojunctions for Efficient Promotion of Visible Light Photodegradation of Tetracycline. ACS Omega, 5(51), 33269-33279. DOI: 10.1021/acsomega.0c04969
  33. Kandi, D., Mansingh, S., Behera, A., Parida, K. (2021). Calculation of relative fluorescence quantum yield and Urbach energy of colloidal CdS QDs in various easily accessible solvents. Journal of Luminescence, 231, 117792. DOI: 10.1016/j.jlumin.2020.117792
  34. Dharmaraj, D., Krishnamoorthy, M., Rajendran, K., Karuppiah, K., Annamalai, J., Durairaj, K.R., Santhiyagu, P., Ethiraj, K. (2021). Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. Journal of Drug Delivery Science and Technology, 61, 102111. DOI: 10.1016/j.jddst.2020.102111
  35. Mourdikoudis, S., Pallares, R.M., Thanh, N.T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934. DOI: 10.1039/C8NR02278J
  36. Fairuzi, A.A., Bonnia, N.N., Akhir, R.M., Abrani, M.A., Akil, H.M. (2018). Degradation of methylene blue using silver nanoparticles synthesized from imperata cylindrica aqueous extract. IOP Conference Series: Earth and Environmental Science, 105(1), 012018. DOI: 10.1088/1755-1315/105/1/012018
  37. Nasrollahzadeh, M., Issaabadi, Z., Sajadi, S.M. (2019). Green synthesis of Cu/Al2O3 nanoparticles as efficient and recyclable catalyst for reduction of 2, 4-dinitrophenylhydrazine, Methylene blue and Congo red. Composites Part B: Engineering, 166, 112-119. DOI: 10.1016/j.compositesb.2018.11.113
  38. Raj, S., Singh, H., Trivedi, R., Soni, V. (2020). Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Scientific Reports, 10(1), 1-10. DOI: 10.1038/s41598-020-66851-8
  39. Vanaja, M., Paulkumar, K., Baburaja, M., Rajeshkumar, S., Gnanajobitha, G., Malarkodi, C., Sivakavinesan, M., Annadurai, G. (2014). Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorganic Chemistry and Applications, 2014, 742346. DOI: 10.1155/2014/742346

Last update:

No citation recorded.

Last update:

No citation recorded.