Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide

*Yayuk Astuti  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Arnelli Arnelli  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Pardoyo Pardoyo  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Amilia Fauziyah  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Siti Nurhayati  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Arum Dista Wulansari  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Rizka Andianingrum  -  Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Hendri Widiyandari  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
Gaurav A. Bhaduri  -  School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
Received: 12 Apr 2017; Revised: 24 Jun 2017; Accepted: 12 Jul 2017; Published: 1 Dec 2017; Available online: 27 Oct 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Bismuth oxide (Bi2O3) is a well-studied photocatalyst for degradation of various environmental contaminants. In this research Bi2O3 has been synthesized by precipitation method using two different bases (NH4OH and NaOH). The samples thus obtained were then analyzed using FTIR, XRD, and SEM for surface functionalization, crystal structures and morphological differences, respectively. The Bi2O3 precipitated using NH4OH showed a flower like structure made up of individual plates having α-Bi2O3 crystal structure. The precipitate obtained using NaOH showed a honeycomb like flower structure with a mixture of both α-Bi2O3 and γ-Bi2O3 crystal structure. Degradation of methyl orange (MO) was used as a model system to test the photocatalytic activity of the bismuth oxide. The Bi2O3 synthesized using NH4OH showed superior photocatalytic degradation of methyl orange than the one synthesized using NaOH. Copyright © 2017 BCREC Group. All rights reserved

Received: 12nd April 2017; Revised: 24th June 2017; Accepted: 12nd July 2017; Available online: 27th October 2017; Published regularly: December 2017

How to Cite: Astuti, Y., Arnelli, Pardoyo, Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017). Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 478-484 (doi:10.9767/bcrec.12.3.1144.478-484)

 

Keywords: Bismuth oxide; photocatalyst; precipitation; precipitating agents
Funding: Faculty of Science and Mathematics, Diponegoro University for financial support with grant no. 3045/UN7.3.8/PG/2015

Article Metrics:

  1. Mallahi, M., Shokuhfar, A., Vaezi, M.R., Esmaeilirad, A., Mazinani, V. (2014). Synthesis and Characterization of Bismuth Oxide Nanoparticles via Sol-Gel Method. American Journal of Engineering Research (AJER), 03: 162-165
  2. Gomez, C.L., Depablos-Rivera, O., Silva-Bermudez, P., Muhl, S., Zeinert, A., Lejeune, M., Charvet, S., Barroy, P., Camps, E., Rodil, S.E. (2015). Opto-electronic Properties of Bismuth Oxide Films Presenting Different Crystallographic Phases. Thin Solid Films, 578: 103-112
  3. Lee, J.G., Kim, S.H., Yoon, H.H. (2011). Synthesis of Yttria-Doped Bismuth Oxide Powder by Carbonate Coprecipitation for IT-SOFC Electrolyte. Journal of Nanoscience and Nanotechnology, 11(1): 820-823
  4. Chu, Y.-C., Lee, G.J., Chen, C.Y., Ma, S.H., Wu, J.J., Horng, T.L., Chen, K.H. and Chen, J.H. (2013). Preparation of Bismuth Oxide Photocatalyst and Its Application in White-light LEDs. Journal of Nanomaterials, 2013: 1-7
  5. Li, Y., Trujillo, M.A., Fu, E., Patterson, B., Fei, L., Xu, Y., Deng, S., Smirnov, S., Luo, H. (2013). Bismuth Oxide: A New Lithium-Ion Battery Anode. Journal of Materials Chemistry A, 1(39): 12123-12127
  6. Liu, X., Pan, L., Lv, T., Sun, Z., Sun, C.Q. (2013). Visible Light Photocatalytic Degradation of Dyes by Bismuth Oxide-Reduced Graphene Oxide Composites Prepared via Microwave-Assisted Method. Journal of Colloid and Interface Science, 408: 145-150
  7. Martirosyan, K.S., Wang, L., Vicent, A., Luss D. (2009). Synthesis and Performance of Bismuth Trioxide Nanoparticles for High Energy Gas Generator Use. Nanotechnology, 20(40): 1-8
  8. Gotić, M., Popović, S., Musić, S. (2007). Influence of Synthesis Procedure on the Morphology of Bismuth Oxide Particles. Materials Letters, 61(3): 709-714
  9. Zhou, L., Wang, W., Xu, H., Sun, S., Shang, M. (2009). Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis. Chemistry - A European Journal, 15(7): 1776-1782
  10. Rubel, M.H.K., Miura, A., Takei, T., Kumada, N., Ali, M.M., Nagao, M., Watauchi, S., Tanaka, I., Oka, K., Azuma, M. (2014). Superconducting Double Perovskite Bismuth Oxide Prepared by a Low-Temperature Hydrothermal Reaction. Angewandte Chemie International Edition, 53(14): 3599-3603
  11. Sarli, D.V., Landi, G., Lisi L., Saliva, A., Di Benedetto, A. (2016). Catalytic Diesel Particulate Filters with Highly Dispersed Ceria: Effect of the Soot-Catalyst Contact on the Regeneration Performance. Applied Catalysis B: Environmental, 197:116-124
  12. Sarli, V.D., Landi, G., Lisi, L. (2017). Ceria-Coated Diesel Particulate Filters for Continuous Regeneration. AlChE Journal, AIChE Journal, 63(8): 3442-3449
  13. Pérez, V.R., Bueno-López A. (2015). Catalytic Regeneration of Diesel Particulate Filters: Comparison of Pt and CePr Active Phases. Chemical Engineering Journal, 279: 79-85
  14. Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2013). Photocatalytic Degradation of Methyl Orange Using α-Bi2O3 Prepared without Surfactant. Journal of Alloys and Compounds, 563: 104-107
  15. Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2014). Enhanced Photocatalytic Degradation of Methyl Orange by Gamma Bi2O3 and Its Kinetics. Journal of Alloys and Compounds, 601: 85-87
  16. López-Salinas, F.I., Martínez-Castañón, G.A., Martínez-Mendoza, J.R., Facundo Ruiz. (2010). Synthesis and Characterization of Nanostructured Powders of Bi2O3, BiOCl and Bi. Materials Letters, 64(14): 1555-1558
  17. Zhong, J.B., Zeng, J., Li, J.Z., Hu, W. (2011). Photocatalytic Activity of Bi2O3 Prepared by Different Precipitants. Advanced Materials Research, 239-242: 998-1001
  18. Lu, Y., He, X.Y., Zhong, J.B., Li, J.Z., Hu, W. (2012). Photocatalytic Activity of Bi2O3 Prepared by Different pH Value. Advanced Materials Research, 418-420: 554-557
  19. Tseng, T.-K., Choi, J., Jung, D-W., Davidson, M., Holloway, P.H. (2010). Three-Dimensional Self-Assembled Hierarchical Architectures of Gamma-Phase Flowerlike Bismuth Oxide. ACS Applied Materials & Interfaces, 2(4): 943-946
  20. Bartonickova, E., Cihlar, J., Castkova, K. (2007). Microwave-assisted Synthesis of Bismuth Oxide. Processing and Application of Ceramics, 1(1-2): 29-33
  21. La, J., Huang, Y., Luo G., Lai, J., Liu, C., Chu, G. (2013). Synthesis of Bismuth Oxide Nanoparticles by Solution Combustion Method. Particulate Science and Technology, 31(3): 287-290
  22. Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., Bhaduri, G. (2016). Synthesis of α-Bismuth Oxide Using Solution Combustion Method and Its Photocatalytic Properties. IOP Conference Series: Materials Science and Engineering, 107(1): 1-7
  23. Mehring, M. (2007). From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds. Coordination Chemistry Reviews, 251(7-8): 974-1006
  24. Hu, Y., Liu, N.-H., Lin, U.-L. (1998). Glass Formation and Glass Structure of the BiO1.5-PbO-CuO System. Journal of Materials Science, 33(1): 229-234
  25. Narang, S.N., Patel, N.D., Kartha, V.B. (1994). Infrared and Raman Spectral Studies and Normal Modes of α-Bi2O3. Journal of Molecular Structure, 327(2): 221-235
  26. Iordanova, R., Dimitriev, Y., Dimitrov, V., Kassabov, S., Klissurski, D. (1996). Glass Formation and Structure in the V2O5-Bi2O3-Fe2O3 Glasses. Journal of Non-Crystalline Solids, 204(2): 141-150
  27. Iordanova, R., Dimitrov, V., Dimitriev, Y., Klissurski, D. (1994). Glass Formation and Structure of Glasses in the V2O5-MoO3-Bi2O3 System. Journal of Non-Crystalline Solids, 180(1): 58-65
  28. Duan, F., Zheng, Y., Liu, L., Chen, M., Xie, Y. (2010). Synthesis and Photocatalytic Behaviour of 3D Flowerlike Bismuth Oxide Formate Architectures. Materials Letters, 64(14): 1566-1569
  29. Yang, L.-L., Han, Q-F, Zhao, J., Zhu, J-W., Wang, X., Ma, W-H. (2014). Synthesis of Bi2O3 Architectures in DMF-H2O Solution by Precipitation Method and their Photocatalytic Activity. Journal of Alloys and Compounds, 614: 353-359

Last update: 2021-05-15 02:56:44

No citation recorded.

Last update: 2021-05-15 02:56:44

  1. Influence of NH4OH concentration in synthesis of bismuth oxide to physicochemical properties and photocatalytic activity in methyl orange degradation

    Astuti Y.. AIP Conference Proceedings, 127 , 2018. doi: 10.1063/1.5064962
  2. Synthesis of surfactant modified activated carbon (SMAC) from rice husks as Ni(II) and Cr(VI) adsorbent

    Arnelli. IOP Conference Series: Materials Science and Engineering, 127 (1), 2019. doi: 10.1088/1757-899X/509/1/012023
  3. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis

    Reverberi A.. Frontiers of Chemical Science and Engineering, 12 (4), 2018. doi: 10.1007/s11705-018-1744-5
  4. Synthesis of activated carbon/bismuth oxide composite and its characterization for battery electrode

    Astuti Y.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2019. doi: 10.1088/1757-899X/509/1/012153
  5. Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method

    Astuti Y.. International Journal of Technology, 11 (1), 2020. doi: 10.14716/ijtech.v11i1.3342
  6. The Role of H2C2O4 and Na2CO3 as Precipitating Agents on the Physichochemical Properties and Photocatalytic Activity of Bismuth Oxide

    Astuti Y.. Open Chemistry, 18 (1), 2020. doi: 10.1515/chem-2020-0013
  7. Studying impact of citric acid-bismuth nitrate pentahydrate ratio on photocatalytic activity of bismuth oxide prepared by solution combustion method

    Astuti Y.. Rasayan Journal of Chemistry, 12 (4), 2019. doi: 10.31788/RJC.2019.1245323
  8. Luminescence properties of Bi doped La 2 O 3 powder phosphor

    Jaffar B.. Journal of Luminescence, 127 , 2019. doi: 10.1016/j.jlumin.2019.01.044
  9. Synthesis of Bi/BiOCl/PVP hybrids with efficient photocatalytic activity

    Li Y.. Materials Research Express, 6 (10), 2019. doi: 10.1088/2053-1591/ab3cd4
  10. Hydrazine and urea fueled-solution combustion method for bi2o3 synthesis: Characterization of physicochemical properties and photocatalytic activity

    Astuti Y.. Bulletin of Chemical Reaction Engineering & Catalysis, 15 (1), 2020. doi: 10.9767/bcrec.15.1.5483.104-111
  11. Enhanced luminescence and photocatalytic activity of Bi2O3:Ho3+ needles

    Divya J.. Journal of Alloys and Compounds, 127 , 2020. doi: 10.1016/j.jallcom.2020.155641