skip to main content

Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide

1Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia

2Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia

3School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom

Received: 12 Apr 2017; Revised: 24 Jun 2017; Accepted: 12 Jul 2017; Available online: 27 Oct 2017; Published: 1 Dec 2017.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

Bismuth oxide (Bi2O3) is a well-studied photocatalyst for degradation of various environmental contaminants. In this research Bi2O3 has been synthesized by precipitation method using two different bases (NH4OH and NaOH). The samples thus obtained were then analyzed using FTIR, XRD, and SEM for surface functionalization, crystal structures and morphological differences, respectively. The Bi2O3 precipitated using NH4OH showed a flower like structure made up of individual plates having α-Bi2O3 crystal structure. The precipitate obtained using NaOH showed a honeycomb like flower structure with a mixture of both α-Bi2O3 and γ-Bi2O3 crystal structure. Degradation of methyl orange (MO) was used as a model system to test the photocatalytic activity of the bismuth oxide. The Bi2O3 synthesized using NH4OH showed superior photocatalytic degradation of methyl orange than the one synthesized using NaOH. 

Fulltext View|Download
Keywords: Bismuth oxide; photocatalyst; precipitation; precipitating agents
Funding: Faculty of Science and Mathematics, Diponegoro University for financial support with grant no. 3045/UN7.3.8/PG/2015

Article Metrics:

  1. Mallahi, M., Shokuhfar, A., Vaezi, M.R., Esmaeilirad, A., Mazinani, V. (2014). Synthesis and Characterization of Bismuth Oxide Nanoparticles via Sol-Gel Method. American Journal of Engineering Research (AJER), 03: 162-165
  2. Gomez, C.L., Depablos-Rivera, O., Silva-Bermudez, P., Muhl, S., Zeinert, A., Lejeune, M., Charvet, S., Barroy, P., Camps, E., Rodil, S.E. (2015). Opto-electronic Properties of Bismuth Oxide Films Presenting Different Crystallographic Phases. Thin Solid Films, 578: 103-112
  3. Lee, J.G., Kim, S.H., Yoon, H.H. (2011). Synthesis of Yttria-Doped Bismuth Oxide Powder by Carbonate Coprecipitation for IT-SOFC Electrolyte. Journal of Nanoscience and Nanotechnology, 11(1): 820-823
  4. Chu, Y.-C., Lee, G.J., Chen, C.Y., Ma, S.H., Wu, J.J., Horng, T.L., Chen, K.H. and Chen, J.H. (2013). Preparation of Bismuth Oxide Photocatalyst and Its Application in White-light LEDs. Journal of Nanomaterials, 2013: 1-7
  5. Li, Y., Trujillo, M.A., Fu, E., Patterson, B., Fei, L., Xu, Y., Deng, S., Smirnov, S., Luo, H. (2013). Bismuth Oxide: A New Lithium-Ion Battery Anode. Journal of Materials Chemistry A, 1(39): 12123-12127
  6. Liu, X., Pan, L., Lv, T., Sun, Z., Sun, C.Q. (2013). Visible Light Photocatalytic Degradation of Dyes by Bismuth Oxide-Reduced Graphene Oxide Composites Prepared via Microwave-Assisted Method. Journal of Colloid and Interface Science, 408: 145-150
  7. Martirosyan, K.S., Wang, L., Vicent, A., Luss D. (2009). Synthesis and Performance of Bismuth Trioxide Nanoparticles for High Energy Gas Generator Use. Nanotechnology, 20(40): 1-8
  8. Gotić, M., Popović, S., Musić, S. (2007). Influence of Synthesis Procedure on the Morphology of Bismuth Oxide Particles. Materials Letters, 61(3): 709-714
  9. Zhou, L., Wang, W., Xu, H., Sun, S., Shang, M. (2009). Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis. Chemistry - A European Journal, 15(7): 1776-1782
  10. Rubel, M.H.K., Miura, A., Takei, T., Kumada, N., Ali, M.M., Nagao, M., Watauchi, S., Tanaka, I., Oka, K., Azuma, M. (2014). Superconducting Double Perovskite Bismuth Oxide Prepared by a Low-Temperature Hydrothermal Reaction. Angewandte Chemie International Edition, 53(14): 3599-3603
  11. Sarli, D.V., Landi, G., Lisi L., Saliva, A., Di Benedetto, A. (2016). Catalytic Diesel Particulate Filters with Highly Dispersed Ceria: Effect of the Soot-Catalyst Contact on the Regeneration Performance. Applied Catalysis B: Environmental, 197:116-124
  12. Sarli, V.D., Landi, G., Lisi, L. (2017). Ceria-Coated Diesel Particulate Filters for Continuous Regeneration. AlChE Journal, AIChE Journal, 63(8): 3442-3449
  13. Pérez, V.R., Bueno-López A. (2015). Catalytic Regeneration of Diesel Particulate Filters: Comparison of Pt and CePr Active Phases. Chemical Engineering Journal, 279: 79-85
  14. Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2013). Photocatalytic Degradation of Methyl Orange Using α-Bi2O3 Prepared without Surfactant. Journal of Alloys and Compounds, 563: 104-107
  15. Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2014). Enhanced Photocatalytic Degradation of Methyl Orange by Gamma Bi2O3 and Its Kinetics. Journal of Alloys and Compounds, 601: 85-87
  16. López-Salinas, F.I., Martínez-Castañón, G.A., Martínez-Mendoza, J.R., Facundo Ruiz. (2010). Synthesis and Characterization of Nanostructured Powders of Bi2O3, BiOCl and Bi. Materials Letters, 64(14): 1555-1558
  17. Zhong, J.B., Zeng, J., Li, J.Z., Hu, W. (2011). Photocatalytic Activity of Bi2O3 Prepared by Different Precipitants. Advanced Materials Research, 239-242: 998-1001
  18. Lu, Y., He, X.Y., Zhong, J.B., Li, J.Z., Hu, W. (2012). Photocatalytic Activity of Bi2O3 Prepared by Different pH Value. Advanced Materials Research, 418-420: 554-557
  19. Tseng, T.-K., Choi, J., Jung, D-W., Davidson, M., Holloway, P.H. (2010). Three-Dimensional Self-Assembled Hierarchical Architectures of Gamma-Phase Flowerlike Bismuth Oxide. ACS Applied Materials & Interfaces, 2(4): 943-946
  20. Bartonickova, E., Cihlar, J., Castkova, K. (2007). Microwave-assisted Synthesis of Bismuth Oxide. Processing and Application of Ceramics, 1(1-2): 29-33
  21. La, J., Huang, Y., Luo G., Lai, J., Liu, C., Chu, G. (2013). Synthesis of Bismuth Oxide Nanoparticles by Solution Combustion Method. Particulate Science and Technology, 31(3): 287-290
  22. Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., Bhaduri, G. (2016). Synthesis of α-Bismuth Oxide Using Solution Combustion Method and Its Photocatalytic Properties. IOP Conference Series: Materials Science and Engineering, 107(1): 1-7
  23. Mehring, M. (2007). From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds. Coordination Chemistry Reviews, 251(7-8): 974-1006
  24. Hu, Y., Liu, N.-H., Lin, U.-L. (1998). Glass Formation and Glass Structure of the BiO1.5-PbO-CuO System. Journal of Materials Science, 33(1): 229-234
  25. Narang, S.N., Patel, N.D., Kartha, V.B. (1994). Infrared and Raman Spectral Studies and Normal Modes of α-Bi2O3. Journal of Molecular Structure, 327(2): 221-235
  26. Iordanova, R., Dimitriev, Y., Dimitrov, V., Kassabov, S., Klissurski, D. (1996). Glass Formation and Structure in the V2O5-Bi2O3-Fe2O3 Glasses. Journal of Non-Crystalline Solids, 204(2): 141-150
  27. Iordanova, R., Dimitrov, V., Dimitriev, Y., Klissurski, D. (1994). Glass Formation and Structure of Glasses in the V2O5-MoO3-Bi2O3 System. Journal of Non-Crystalline Solids, 180(1): 58-65
  28. Duan, F., Zheng, Y., Liu, L., Chen, M., Xie, Y. (2010). Synthesis and Photocatalytic Behaviour of 3D Flowerlike Bismuth Oxide Formate Architectures. Materials Letters, 64(14): 1566-1569
  29. Yang, L.-L., Han, Q-F, Zhao, J., Zhu, J-W., Wang, X., Ma, W-H. (2014). Synthesis of Bi2O3 Architectures in DMF-H2O Solution by Precipitation Method and their Photocatalytic Activity. Journal of Alloys and Compounds, 614: 353-359

Last update:

No citation recorded.

Last update:

No citation recorded.