skip to main content

Photocatalytic Degradation of Remazol Brilliant Blue R and Remazol Yellow FG using TiO2 doped Cd, Co, Mn

1Analytical Chemistry, Chemistry Department, FMIPA, Sebelas Maret University, Indonesia

2Inorganic Chemistry, Chemistry Department, FMIPA, Sebelas Maret University, Indonesia

Received: 11 Jun 2021; Revised: 25 Aug 2021; Accepted: 26 Aug 2021; Published: 20 Dec 2021; Available online: 31 Aug 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

TiO2 and TiO2 doped Cd, Co, Mn (TiO2-M) were synthesized with a sol-gel method, and the photocatalytic activity of Remazol Brilliant Blue R and Remazol Yellow FG has been conducted. TiO2-M (Cd, Co, Mn) was synthesized with the mol Ti:M ratio of 3:1, and the materials were calcined at 300, 400, and 500 °C. The materials were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), and UV-Vis Reflectance. The XRD result shows that at the temperature of 300 °C TiO2 and TiO2-M formed tend to be amorphous. At 400 °C the anatase phase is formed, while at 500 °C the rutile phase begins to form. And overall, the crystallinity of TiO2 is higher than metal-doped TiO2. The UV-Vis Reflectance result showed that the bandgap energy of all doping materials (TiO2-M) decreased. The larger the metal ion radius of dopant, the larger the crystal size obtained  and then the higher the bandgap obtained. The results of SEM-EDX showed that the morphology of TiO2 was spherical and regular, whereas the morphology of TiO2-M had a smoother surface due to the influence of metal doping. Photocatalytic activity of TiO2-M on Remazol Brilliant Blue R and Remazol Yellow FG was greater than TiO2. The optimum pH of the solution was obtained at pH 5 and the optimum catalyst phase was obtained at the anatase phase. The percentages degradation for 30 min of Remazol Brilliant Blue R were 67.34% (TiO2), 92.12% (TiO2-Co), 85.47% (TiO2-Mn), and 83.91% (TiO2-Cd), while for Remazol Yellow FG they were 58.84% (TiO2), 74.61% (TiO2-Co), 67.93% (TiO2-Mn) and 64.19% (TiO2-Cd), respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Degradation; Remazol Brilliant Blue R; Remazol Yellow FG,;TiO2; TiO2-M (Cd, Co, Mn)
Funding: Ministry of Education, Culture, Research and Technology, Republic of Indonesia under contract Hibah Riset Fundamental contract number 543/UN.27.21/PP/2018

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Routoula, E., Patwardhan, S.V. (2020). Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environ. Sci. Technol., 54, 647–664. DOI: 10.1021/acs.est.9b03737
  2. Saputra, O.A., Kurnia, K., Pujiasih, S., Rizki, V.N., Nurhayati, B., Pramono, E., Purnawan, C. (2020). Silylated-montmorillonite as co-adsorbent of chitosan composites for methylene blue dye removal in aqueous solution. Commun. Sci. Technol., 5, 45–52. DOI: 10.21924/cst.5.1.2020.182
  3. Hariani, P.L., Faizal, M., Ridwan, R., Marsi, M., Setiabudidaya, D. (2018). Removal of Procion Red MX-5B from songket’s industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite. Sustain. Environ. Res., 28, 158–164. DOI: 10.1016/j.serj.2018.01.004
  4. Rethinasabapathy, M., Kang, S.M., Lee, I., Lee, G.W., Hwang, S.K., Roh, C., Huh, Y.S. (2018). Layer-Structured POSS-Modified Fe-Aminoclay/Carboxymethyl Cellulose Composite as a Superior Adsorbent for the Removal of Radioactive Cesium and Cationic Dyes. Ind. Eng. Chem. Res., 57, 13731–13741. DOI: 10.1021/acs.iecr.8b02764
  5. Wijaya, K., Sugiharto, E., Fatimah, I., Sudiono, S., Kurniaysih, D. (2006). Utilisasi TiO2-Zeolit dan Sinar UV untuk Fotodegradasi Zat Warna Congo Red. Teknoin, 11(3), 199–209. DOI: 10.20885/.v11i3.88
  6. Fatimah, I., Fadillah, G., Sahroni, I., Kamari, A., Sagadevan, S., Doong, R.A. (2021). Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst. Arab. J. Chem., 14, 102973. DOI: 10.1016/j.arabjc.2020.102973
  7. Harjati, F., Citradewi, P.W., Purwiandono, G., Fatimah, I. (2020). Green synthesis of hematite/TUD-1 nanocomposite as efficient photocatalyst for bromophenol blue and methyl violet degradation. Arab. J. Chem., 13, 8395–8410. DOI: 10.1016/j.arabjc.2020.05.032
  8. Begum, S., Narwade, V.N., Halge, D.I., Jejurikar, S.M., Dadge, J.W., Muduli, S., Mahabole, M.P., Bogle, K.A. (2020). Remarkable photocatalytic degradation of Remazol Brilliant Blue R dye using bio-photocatalyst ‘nano-hydroxyapatite’. Materials Research Express, 7, 025013. DOI: 10.1088/2053-1591/ab6f3b
  9. Mattle, M.J., Thampi, K.R. (2013). Photocatalytic degradation of Remazol Brilliant Blue by sol–gel derived carbon-doped TiO2. Applied Catalysis B: Environmental, 140–141, 348–355. DOI: 10.1016/j.apcatb.2013.04.020
  10. Hanafi, M.F., Sapawe, N. (2020). Effective photocatalytic degradation of remazol brilliant blue using nickel catalyst. Materials Today: Proceedings, 31, 275–277. DOI: 10.1016/j.matpr.2020.05.753
  11. Suprihatin, I.E., Sibarani, J., Sulihingtyas, W.D., Ariati, K. (2019). Photodegradation of remazol brilliant blue using Fe2O3 intercalated bentonite. Journal of Physics: Conference Series, 1341, 032028. DOI: 10.1088/1742-6596/1341/3/032028
  12. Bhuiyan, M.S.H., Miah, A.Y., Paul, S.C., Aka, T.D., Saha, O., Rahaman, M.M., Sharif, M.J.I., Habiba, O., Ashaduzzaman, M. (2020). Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6, e04603. DOI: 10.1016/j.heliyon.2020.e04603
  13. Akti, F., Balci, S. (2022). Synthesis of APTES and alcohol modified Sn/SBA-15 in presence of competitive ion: Test in degradation of Remazol Yellow. Materials Research Bulletin, 145, 111496. DOI: 10.1016/j.materresbull.2021.111496
  14. Akti, F. (2018). Photocatalytic degradation of remazol yellow using polyaniline–doped tin oxide hybrid photocatalysts with diatomite support. Applied Surface Science, 455, 931–939. DOI: 10.1016/j.apsusc.2018.06.019
  15. Khairy, M., Zakariya, W. (2014). Effect of Metal-doping of TiO2 Nanoparticle on Their Photocatalytic Activities toward Removal of Organic Dyes. Egyptian Petroleum Research Institute, 23, 419–426. DOI: 10.1016/j.ejpe.2014.09.010
  16. Yan, H., Wang, X., Yao, M., Yao, X. (2013). Band Structure Design of Semiconductors for Enhanced Photocatalytic Activity: The Case of TiO2. Progress in Natural Science: Materials International, 23(4), 402–407. DOI: 10.1016/j.pnsc.2013.06.002
  17. Purnawan, C., Wahyuningsih, S., Kusuma, P.P. (2016). Photocatalytic and photoelectrocatalytic degradation of methyl orange using graphite/PbTiO3 composite. Indonesia J. Chem., 16, 347–352. DOI: 10.22146/ijc.21152
  18. Purnawan, C., Wahyuningsih, S., Nawakusuma, V. (2018). Methyl violet degradation using photocatalytic and photoelectrocatalytic processes over graphite/PbTiO3 composite. Bull. Chem. React. Eng. Catal., 13, 127–135. DOI: 10.9767/bcrec.13.1.1354.127-135
  19. Rilda, Y., Arief, S., Dharma, A., Alif, A. (2010). Modification and Characterization of Titania (M-TiO2) by Doping Transition Metals Feni and Cuni. Indonesian Journal of Nature, 12(2), 178–185. DOI: 10.31258/jnat.12.2.178-185
  20. Oseghe, E.O., Ndungu, P.G., Jonnalagadda, S.B. (2015). Synthesis of Mesoporous Mn/TiO2 Nanocomposites and Investigating the Photocatalytic Properties in Aqueous System. Environ Sci Pollut Res., 22, 211–222. DOI: 10.1016/j.cej.2012.02.072
  21. Goswami, P., Debnath, R.K., Ganguli, J.N. (2013). Photophysical and Photochemical Properties of Nanosized Cobalt-Doped TiO2 Photocatalyst. Asian Journal of Chemistry, 25(13), 7118–7124. DOI: 10.14233/ajchem.2013.14458
  22. Behnajady, M.A., Eskandarloo, H., Modirshahla, N., Shokri, M. (2011). Sol-gel Low-Temperature Synthesis of Stable Anatase-type TiO2 Nanoparticle Under Different Conditions and Its Photocatalytic Activity. Photochemistry and Photobiology, 87, 1002–1008. DOI: 10.1111/j.1751-1097.2011.00954.x
  23. Naghibi, S., Gharagozlou, M. (2017). Solvothermal Synthesis of M-doped TiO2 Nanoparticle for Sonocatalysis of Methylene Blue and Methyl Orange (M= Cd, Ag, Fe, Ce, and Cu). Journal of The Chinese Chemical Society, 1(1), 1–11. DOI: 10.1002/jccs.201700013
  24. Wang, Y., Zhang, R., Li, J., Li, L., Lin, S. (2014). First-principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters, 9, 46. DOI: 10.1186/1556-276X-9-46
  25. Wu, H.C., Lin, Y.S., Lin, S.W. (2013). Mechanisms of Visible Light Photocatalysis in N-Doped Anatase TiO2 with Oxygen Vacancies from GGA+U Calculations. International Journal of Photoenergy, 2013 (5358). DOI: 10.1155/2013/289328
  26. Almu’minin, A. S., Haryati, T., Mulyono, T. (2016). Sintesis dan Karakterisasi Film Tipis TiO2 sebagai Pendegradasi Pewarna Tekstil Procion Red MX-8B. Jurnal Ilmu Dasar, 17(2), 65–72. DOI: 10.19184/jid.v17i2.2685
  27. Chen, H., Jiang, G., Jiang T., Li, L., Liu, Y., Huang, Q., Chen, W. (2015). Preparation of Mn-doped ZrO2/TiO2 Photocatalysts for Efficient Degradation of Rhodamine B. MRS Communications, 5, 525–531. DOI: 10.1557/mrc.2015.59
  28. Sibarani, J., Purba, D.L., Suprihatin, I.E., Manurung, M. (2016). Photodegradation of Rhodamine B Using ZnO/UV/Fenton's Reagent. Journal of Applied Chemistry, 4(1), 84–93
  29. El-Bahy, Z.M., Ismail, A.A., Mohamed, R.M. (2009). Enhancement of Titania by Doping Rare Earth for Photodegradation of Organic Dye (Direct Blue). Journal of Hazardous Materials, 166, 138–143. DOI: 10.1016/j.jhazmat.2008.11.022
  30. Kiswanti, E.A.D., Pratapa, S. (2013). Synthesis of Titanium Dioxide (TiO2) Using Acid-Dissolved Metal Method. Jurnal Sains dan Seni Pomits, 3(2), 18–21. DOI: 10.12962/j23373520.v3i2.6697
  31. Viana, M.M., Soares, V.F., Mohallem, N.D.S. (2010). Synthesis and Characterization of TiO2 Nanoparticles. Ceramics International, 36, 2047–2053. DOI: 10.1016/j.ceramint.2010.04.006
  32. Khataee, A.R., Kasiri, M.B. (2010). Photocatalytic Degradation of Organic Dyes in the Presence of Nanostructured Titanium Dioxide: Influnce of the Chemical Structure of Dyes. Journal of Molecular Catalysis A: Chemical, 328, 8–26. DOI: 10.1016/j.molcata.2010.05.023
  33. Subagja, R., Royani, A., Suharyanto, A., Andriyah, L., Natasha N.C. (2014). Pengaruh Temperatur dan Waktu Kalsinasi Terhadap Perubahan Fasa TiO2. Majalah Metalurgi, 29(3), 245–254. DOI: 10.14203/metalurgi.v29i3.298
  34. Susilowati, R., Januar, H.I. (2014). Temporal Variation and Physical and Chemical Stability of Brown Seaweed Carotenoid Bioactive Compounds Turbinaria decurrens. JPB Perikanan, 9(1), 21–28. DOI: 10.15578/jpbkp.v9i1.96

Last update:

No citation recorded.

Last update:

No citation recorded.