skip to main content

A Novel Synthetic Nano-Catalyst (Ag2O3/Zeolite) for High Quality of Light Naphtha by Batch Oxidative Desulfurization Reactor

1Petroleum & Gas Refinery Engineering, College of Petroleum Process Engineering, Tikrit University, Iraq

2Chemical Engineering Department, College of Engineering, Tikrit University, Iraq

3Chemical Engineering, Middle Technical University, Iraq

4 Nanotechnology and Advance Material Research Center, University of Technology, Iraq

5 Chemical & Process Engineering Division, University of Bradford, Bradford BD7 1DP, United Kingdom

View all affiliations
Received: 10 Jun 2021; Revised: 28 Jul 2021; Accepted: 30 Jul 2021; Available online: 13 Aug 2021; Published: 20 Dec 2021.
Editor(s): Dmitry Murzin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer–Emmett–Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80–140 °C) and reaction times (30–50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst  in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Nano-Catalyst; Oxidative desulfurization; Silver Oxide; Kinetic Model

Article Metrics:

  1. Al-Malki, A. (2004). Desulfurization of gasoline and diesel fuels, using non-hydrogen consuming techniques. King Fahd University of Petroleum and Minerals
  2. Speight, J.G. (1999). The desulfurization of heavy oils and residua. CRC Press
  3. Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., Kabe, T. (2000). Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction. Energy & Fuels, 14, 1232-1239. DOI: 10.1021/ef000096i
  4. Meman, N.M., Zarenezhad, B., Rashidi, A., Hajjar, Z., Esmaeili, E. (2015). Application of palladium supported on functionalized MWNTs for oxidative desulfurization of naphtha. Journal of Industrial and Engineering Chemistry, 22, 179-184. DOI: 10.1016/j.jiec.2014.07.008
  5. Babich, I., Moulijn, J. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel, 82, 607-631. DOI: 10.1016/S0016-2361(02)00324-1
  6. Jeong, K.-E., Kim, T.-W., Kim, J.-W., Chae, H.-J., Kim, C.-U., Park, Y.-K., Jeong, S.-Y. (2013). Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel. Korean Journal of Chemical Engineering, 30, 509-517. DOI: 10.1007/s11814-013-0025-8
  7. Ali, M.F., Al-Malki, A., El-Ali, B., Martinie, G., Siddiqui, M.N. (2006). Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques. Fuel, 85, 1354-1363. DOI: 10.1016/j.fuel.2005.12.006
  8. Stanislaus, A., Marafi, A., Rana, M.S. (2010). Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 153, 1-68. DOI: 10.1016/j.cattod.2010.05.011
  9. Mei, H., Mei, B.W., Yen, T.F. (2003). A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel, 82, 405-414. DOI: 10.1016/S0016-2361(02)00318-6
  10. Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I. (2008). Study of the first isolated fungus capable of heavy crude oil biodesulfurization. Industrial and Engineering Chemistry Research, 47, 7476–7482. DOI: 10.1021/ie800494p
  11. Verdía, P., Gonzalez, E.J., Rodr´ıguez-Cabo, B., Tojo, E. (2011). Synthesis and characterization of new polysubstituted pyridinium-based ionic liquids: application as solvents on desulfurization of fuel oils. Green Chemistry, 13, 2768-2776. DOI: 10.1039/C1GC15408G
  12. Trakarnpruk, W., Rujiraworawut, K. (2009). Oxidative desulfurization of gas oil by polyoxometalates catalysts. Fuel Processing Technology, 90, 411-414. DOI: 10.1016/j.fuproc.2008.11.002
  13. Abdalla, Z. E. A., Li B. (2012). Preparation of MCM-41 supported (Bu4N)4H3(PW11O39) catalyst and its performance in oxidative desulfurization. Chemical Engineering Journal, 200-202, 113–121. DOI: 10.1016/j.cej.2012.06.004
  14. Ma, X., Zhou, A., Song, C. (2007). A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catalysis Today, 123, 276-284. DOI: 10.1016/j.cattod.2007.02.036
  15. Attar, A., Corcoran, W.H. (1978). Desulfurization of organic sulfur compounds by selective oxidation. 1. Regenerable and nonregenerable oxygen carriers. Industrial and Engineering Chemistry Product Research and Development, 17, 102-109. DOI: 10.1021/i360066a003
  16. Zhang, M., Zhu, W., Xun, S., Li, H., Gu, Q., Zhao, Z., Wang, Q. (2103). Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 220, 328–336. DOI: 10.1016/j.cej.2012.11.138
  17. Muhieddine, A.S., Xiaoliang, M. (2016). Oxidation kinetics of dibenzothiophenes using cumene hydroperoxide as an oxidant over MoO3/Al2O3 catalyst. Fuel, 219, 238–246. DOI: 10.1016/j.fuel.2015.12.050
  18. Richard, F., Boita, T., Pe´rot, G. (2007). Reaction mechanism of 4,6-dimethyldibenzothiophene desulfurization over sulfided NiMoP/Al2O3-zeolite catalysts. Applied Catalysis A: General, 320, 69–79. DOI: 10.1016/j.apcata.2006.12.014
  19. Liu, R., Dou, S., Yu, M., Wang, R. (2017). Oxidative desulfurization of fuel oil catalyzed by magnetically recoverable nano-Fe3O4/SiO2 supported heteropoly compounds. Journal of Cleaner Production, 168, 1048-1058. DOI: 10.1016/j.jclepro.2017.09.097
  20. Yu, X., Han, P., Li, Y. (2018). Oxidative desulfurization of dibenzothiophene catalyzed by α-MnO2 nanosheets on palygorskite using hydrogen peroxide as oxidant. RSC Advances, 8, 17938-17943. DOI: 10.1039/C8RA02396D
  21. Nawaf, A.T., Jarullah, A.T., Abdulateef, L.T (2019). Design of a Synthetic Zinc Oxide Catalyst over Nano-Alumina for Sulfur Removal by Air in a Batch Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 14, 79-92. DOI: 10.9767/bcrec.14.1.2507.79-92
  22. Abdulateef, L.T., Nawaf, A.T., Mahmood, Q. A., Dahham, O. S., Noriman, N. Z., Shayfull, Z. (2018). Preparation, characterization and application of alumina nanoparticles with multiple active component for oxidation desulfurization. AIP Conference Proceedings 2030, 020031. DOI: 10.1063/1.5066672
  23. Qiu, L., Cheng, Y., Yang, C., Zeng, G., Long, Z., Wei, S., Luo, L. (2016). Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone. RSC Advances, 6, 17036-17045. DOI: 10.1039/C5RA23077B
  24. Bakhtiari, G., Ghassabzadeh, H., Royaee, S. G., Abdouss, M., Bazmi, M(2019). Process design for gas condensate desulfurization and synthesis of nano-13X zeolite adsorbent: equilibrium and dynamic studies. Petroleum Science, 16, 417–427. DOI: 10.1007/s12182-018-0287-1
  25. Nawaf, A.T., Gheni, S.A., Jarullah, A.T., Mujtaba, I.M (2015). Improvement of fuel quality by oxidative desulfurization: Design of synthetic catalyst for the process. Fuel Processing Technology, 138, 337–343. DOI: 10.1016/j.fuproc.2015.05.033
  26. Sheibani, S., Zare, K., Safavi, M. M (2019). Investigation of Oxidative Desulfurization of Light Naphtha by NiMo/γ-Al2O3 Catalyst. Iranian Journal of Chemistry and Chemical Engineering, 38, 283-288. DOI: 10.30492/IJCCE.2019.37260
  27. Zhou, X., Li, J., Wang, X., Jin, K., Ma, W. (2009). Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine. Fuel Processing Technology, 90, 317-323. DOI: 10.1016/j.fuproc.2008.09.002
  28. Jima, B.B., Majeed, N.S. (2020). Oxidation Desulphurization of Heavy Naphtha Improved by Ultrasound Waves. Iraqi Journal of Chemical and Petroleum Engineering, 21, 9-14. DOI: 10.31699/IJCPE.2020.1.2
  29. Yazu, K., Matsumura, A., Sato, S. (2010). Oxidative Desulfurization of Naphtha with Hydrogen Peroxide in Presence of Acid Catalyst in Naphtha/Acetic Acid Biphasic System. Journal of the Japan Petroleum Institute, 53(4), 251-255. DOI: 10.1627/jpi.53.251
  30. Khalfalla, H. (2009). Modelling and Optimization of oxidative Desulphurization Process for Model Sulphur Compounds and Heavy Has Oil. Ph.D. Thesis, University of Bradford, Bradford, UK
  31. Shi, M., Zhang, D., Yu, X., Li, Y., Wang, X., Yang, W. (2017). Deep oxidative desulfurization catalyzed by (NH4)5H6PV8Mo4O40 using molecular oxygen as an oxidant. Fuel Processing Technology, 160, 136-142. DOI: 10.1016/j.fuproc.2017.02.038
  32. Malek, N., Yusof, A.M. (2007). Removal of Cr(III) from aqueous solutions using zeolite NaY prepared from rice husk ash. Malaysian Journal of Analytical Sciences, 11, 76-83
  33. Farahzadi, M., Towfighi, J., Mohamadalizadeh, A. (2012). Catalytic oxidation of isopropyl mercaptan over nano catalyst of tungsten oxide supported multiwall carbon nanotubes. Fuel Processing Technology, 97, 15-23. DOI: 10.1016/j.fuproc.2011.12.023
  34. Tawfik, A. S., Kazeem, O. S., Saddam, A., Dafalla, H., Gaddafi, I. (2017). Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation. Journal of Cleaner Production, 154, 401-412. DOI: 10.1016/j.jclepro.2017.03.169
  35. Ahmad, W., Ahmad, I. (2017). Desulphurization of Transportation Fuels by Per-Formic Acid Oxidant Using MoOx Loaded on ZSM-5 Catalyst. Journal of Power and Energy Engineering, 5, 87. DOI: 10.4236/jpee.2017.512011
  36. Imtiaz, A., Waqas, A., Muhammad, I. (2013). Desulfurization of liquid fuels using air-assisted performic acid oxidation and emulsion catalyst. Chinese Journal of Catalysis, 34, 1839-1847. DOI: 10.1016/S1872-2067(12)60668-8
  37. Jarullah, A.T., Aldulaimi, S., Al-Tabbakh, B. A., Mujtaba, I.M. (2020). A new synthetic composite nano-catalystachieving an environmentally Friendly fuel bybatch oxidative desulfurization. Chemical Engineering Research and Design, 160, 405–416. DOI: 10.1016/j.cherd.2020.05.015
  38. Kalapathy, U., Proctor, A., Shultz, J., (2000). A simple method for production of pure silica from rice hull ash. Bioresource Technology. 73, 257–262. DOI: 10.1016/S0960-8524(99)00127-3
  39. Ghasemi, Z., Younesi, H. (2011). Preparation and Characterization of Nanozeolite NaA from Rice Husk at Room Temperature without Organic Additives. Journal of Nanomaterials. 858961, 1-8. DOI: 10.1155/2011/858961
  40. Nawaf, A.T., Jarullah, A.T., Gheni, S.A., Mujtaba, I.M. (2015). Development of kinetic and process models for the oxidative desulfurization of light fuel, using experiments and the parameter estimation technique. Industrial and Engineering Chemistry Research, 54, 12503-12515. DOI: 10.1021/acs.iecr.5b03289
  41. Abbas, M.N., Ibrahim, S.A. (2020). Catalytic and thermal desulfurization of light naphtha fraction. Journal of King Saud University – Engineering Sciences, 32, 229-235. DOI: 10.1016/j.jksues.2019.08.001
  42. Meman, N.M., Zarenezhad, B., Rashidi, A., Hajjar, Z., Esmaeili, E. (2015). Application of palladium supported on functionalized MWNTs for oxidative desulfurization of naphtha. Journal of Industrial and Engineering Chemistry, 22, 179-184. DOI: 10.1016/j.jiec.2014.07.008
  43. Wan Mokhtar W.N.A, Abu Bakar W.A.W., Rusmidah A., Abdul Kadir A.A. (2018) Development of bimetallic and trimetallic oxides doped on molybdenum oxide based material on oxidative desulfurization of diesel. Arab. J. Chem. 11, 1201–1208. DOI: 10.1016/j.arabjc.2016.04.020
  44. Leng K., Sun Y., Zhang X., Yu M., Xu W. (2016) Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel, 174, 9–16. DOI: 10.1016/j.fuel.2016.01.070
  45. Nawaf, A.T., Gheni, S.A., Jarullah, A.T., Mujtaba, I.M. (2015). Optimal design of a trickle bed reactor for light fuel oxidative desulfurization based on experiments and modeling. Energy & Fuels, 29, 3366-3376. DOI: 10.1021/acs.energyfuels.5b00157

Last update:

No citation recorded.

Last update:

No citation recorded.