skip to main content

Degradation of Ciprofloxacin by Titanium Dioxide (TiO2) Nanoparticles: Optimization of Conditions, Toxicity, and Degradation Pathway

1Pharmacy Study Programme, Sekolah Tinggi Ilmu Kesehatan Banyuwangi, Jl. Letkol Istiqlah No. 109, East Java 68422, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Jl. Raya Bandung-Sumedang km. 21, West Java 45363, Indonesia

Received: 9 Jun 2021; Revised: 6 Aug 2021; Accepted: 6 Aug 2021; Published: 20 Dec 2021; Available online: 14 Aug 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Degradation; ciprofloxacin; Titanium Dioxide (TiO2); nanoparticles; degradation; toxicity
Funding: Universitas Padjadjaran

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Hassani, A., Khataee, A., Karaca, S., Fathinia, M. (2016). Heterogeneous Photocatalytic Ozonation of Ciprofloxacin using Synthesized Titanium Dioxide Nanoparticles on a Montmorillonite Support: Parametric Studies, Mechanistic Analysis and Intermediates Identification. RSC Advances, 6(90), 87569-87583. DOI: 10.1039/c6ra19191f
  2. Yogita, S.P., Hendrayana, M.A., Sukrama, I.D.M. (2018). Pola Kepekaan Bakteri Salmonella typhi Terisolasi dari Darah terhadap Siprofloksasin dan Seftriakson di RSUP Sanglah Periode Januari 2015 - Maret 2017. Jurnal Medika, 7(12), 1-6
  3. Musdalipah, M. (2018). Identifikasi Drug Related Problem (DRP) pada Pasien Infeksi Saluran Kemih di Rumah Sakit Bhayangkara Kendari. Jurnal Kesehatan, 11(1), 39-50. DOI: 10.24252/jkesehatan.v11i1.4908
  4. Restyana, A., Admaja, W. (2019). Analisa Biaya Penggunaan Seftriakson dan Siprofloksasin Pasien Infeksi Saluran Kemih di Rumah Sakit X Kabupaten Jombang Tahun 2017. Pharmacy, 16(2), 347-355. DOI: 10.30595/pharmacy.v16i2.5847
  5. Pratiwi, I., Azis, S., Kusumastuti, E. (2018). Rasionalitas Penggunaan Antibiotik Ciprofloxacin pada Penderita Demam Tifoid. Biomedical Journal of Indonesia, 4(2), 46-51. DOI: 10.32539/BJI.V4I2.7959
  6. Raini, M. (2016). Antibiotik Golongan Fluorokuinolon: Manfaat dan Kerugian. Media Litbangkes, 26(3), 163-174. DOI: 10.22435/mpk.v26i3.4449.163-174
  7. Ghanbari, F., Zirrahi, F., Olfati, D., Gohari, F., Hassani, A. (2020). TiO2 Nanoparticles Removal by Electrocoagulation using Iron Electrodes: Catalytic Activity of Electrochemical Sludge for the Degradation of Emerging Pollutant. Journal of Molecular Liquids, 310, 113217. DOI: 10.1016/j.molliq.2020.113217
  8. Lima, V.B., Goulart, L.A., Rocha, R.S., Steter, J.R., Lanza, M.R.V. (2020). Degradation of Antibiotic Ciprofloxacin by Different AOP Systems using Electrochemically Generated Hydrogen Peroxide. Chemosphere, 247, 125807. DOI: 10.1016/j.chemosphere.2019.125807
  9. Rusch, M., Spielmeyer, A., Zorn, H., Hamscher, G. (2018). Biotransformation of Ciprofloxacin by Xylaria longipes: Structure Elucidation and Residual Antibacterial Activity of Metabolites. Appl. Microbiol. Biotechnol., 102(19), 8573-8584. DOI: 10.1007/s00253-018-9231-y
  10. Giri, A.S., Golder, A.K. (2014). Ciprofloxacin Degradation from Aqueous Solution by Fenton Oxidation: Reaction Kinetics and Degradation Mechanisms. RSC Advances, 4(13), 6738-6745. DOI: 10.1039/c3ra45709e
  11. Deng, J., Wu, G., Yuan, S., Zhan, X., Wang, W., Hu, Z.-H. (2019). Ciprofloxacin Degradation in UV/Chlorine Advanced Oxidation Process: Influencing Factors, Mechanisms and Degradation Pathways. Journal of Photochemistry and Photobiology A: Chemistry, 371, 151-158. DOI: 10.1016/j.jphotochem.2018.10.043
  12. Ansori, S., Sriatun, S., Pardoyo, P. (2016). Modifikasi Zeolit Alam Menggunakan TiO2 Pewarna Indigo Carmine. Jurnal Kimia Sains dan Aplikasi, 19(2), 68-71. DOI: 10.14710/jksa.19.2.68-71
  13. Khataee, A., Alidokht, L., Hassani, A., Karaca, S. (2013). Response Surface Analysis of Removal of a Textile Dye by a Turkish Coal Powder. Advances in Environmental Research, 2(4), 291-308. DOI: 10.12989/AER.2013.2.4.291
  14. Usman, M.R., Noviyanti, A.R., Eddy, D.R. (2017). Photocatalytic Degradation of Diazinon Using Titanium Oxide Synthesized by Alkaline Solvent. Indonesian Journal of Chemistry, 17(1), 22-29. DOI: 10.22146/ijc.23548
  15. Hassani, A., Eghbali, P., Kakavandi, B., Lin, K.-Y.A., Ghanbari, F. (2020). Acetaminophen Removal from Aqueous Solutions through Peroxymonosulfate Activation by CoFe2O4/mpg-C3N4 Nanocomposite: Insight into the Performance and Degradation kinetics. Environmental Technology & Innovation, 20, 101127. DOI: 10.1016/j.eti.2020.101127
  16. Anggraini, D.I., Pujilestari, I. (2017). Efektivitas Fotodegradasi Amoksisilin yang Dikatalisis dengan TiO2 dengan Keberadaan Ion Ag(I). Jurnal Kimia Sains dan Aplikasi, 20(3), 105-109. DOI: 10.14710/jksa.20.3.105-109
  17. Türkay, G.K., Kumbur, H. (2019). Investigation of Amoxicillin Removal from Aqueous Solution by Fenton and Photocatalytic Oxidation Processes. Kuwait Journal of Science, 46(2), 85-93
  18. Eckert, H., Bobeth, M., Teixeira, S., Kühn, K., Cuniberti, G. (2015). Modeling of Photocatalytic Degradation of Organic Components in Water by Nanoparticle Suspension. Chemical Engineering Journal, 261, 67-75. DOI: 10.1016/j.cej.2014.05.147
  19. Silva, A.R., Martins, P.M., Teixeira, S., Carabineiro, S.A.C., Kuehn, K., Cuniberti, G., Alves, M.M., Lanceros-Mendez, S., Pereira, L. (2016). Ciprofloxacin Wastewater Treated by UVA Photocatalysis: Contribution of Irradiated TiO2 and ZnO Nanoparticles on the Final Toxicity as Assessed by Vibrio fischeri. RSC Advances, 6(98), 95494-95503. DOI: 10.1039/C6RA19202E
  20. Salma, A., Thoröe-Boveleth, S., Schmidt, T.C., Tuerk, J. (2016). Dependence of Transformation Product Formation on pH During Photolytic and Photocatalytic Degradation of Ciprofloxacin. Journal of Hazardous Materials, 313, 49-59. DOI: 10.1016/j.jhazmat.2016.03.010
  21. Diao, Z.-H., Xu, X.-R., Jiang, D., Liu, J.-J., Kong, L.-J., Li, G., Zuo, L.-Z., Wu, Q.-H. (2017). Simultaneous Photocatalytic Cr(VI) Reduction and Ciprofloxacin Oxidation Over TiO2/Fe0 Composite Under Aerobic Conditions: Performance, Durability, Pathway and Mechanism. Chemical Engineering Journal, 315, 167-176. DOI: 10.1016/j.cej.2017.01.006
  22. Gan, Y., Zhang, M., Xiong, J., Zhu, J., Li, W., Zhang, C., Cheng, G. (2019). Impact of Cu Particles on Adsorption and Photocatalytic Capability of Mesoporous Cu@TiO2 Hybrid Towards Ciprofloxacin Antibiotic Removal. Journal of the Taiwan Institute of Chemical Engineers, 96, 229-242. DOI: 10.1016/j.jtice.2018.11.015
  23. Kutuzova, A., Dontsova, T., Kwapinski, W. (2021). Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts, 11(6), 728. DOI: 10.3390/catal11060728
  24. Usman, M.R., Prasasti, A., Islamiah, S., Firdaus, A.N., Marita, A.W., Fajriyah, S., Yanti, E.F. (2020). Ceftriaxone Degradation by Titanium Dioxide (TiO2) Nanoparticles: Toxicity and Degradation Mechanism. Jurnal Kimia Valensi, 6(1), 82-89. DOI: 10.15408/jkv.v6i1.12475
  25. Eddy, D.R., Ishmah, S.N., Permana, M.D., Firdaus, M.L. (2020). Synthesis of Titanium Dioxide/Silicon Dioxide from Beach Sand as Photocatalyst for Cr and Pb Remediation. Catalysts, 10(11), 1248. DOI: 10.3390/catal10111248
  26. Sanjay, S.S., Kavalapure, R., Palled, M.S., Alegaon, S.G. (2020). Development and Validation of UV-Spectrophotometric Method for Determination of Ciprofloxacin and Curcumin in Bulk Powder. IJPSR, 11(3), 1161-1166. DOI: 10.13040/ijpsr.0975-8232.11(3).1161-66
  27. Mortazavian, S., Saber, A., James, D.E. (2019). Optimization of Photocatalytic Degradation of Acid Blue 113 and Acid Red 88 Textile Dyes in a UV-C/TiO2 Suspension System: Application of Response Surface Methodology (RSM). Catalysts, 9(4), 360-379. DOI: 10.3390/catal9040360
  28. Hu, X., Hu, X., Peng, Q., Zhou, L., Tan, X., Jiang, L., Tang, C., Wang, H., Liu, S., Wang, Y., Ning, Z. (2020). Mechanisms Underlying the Photocatalytic Degradation Pathway of Ciprofloxacin with Heterogeneous TiO2. Chemical Engineering Journal, 380, 122366. DOI: 10.1016/j.cej.2019.122366
  29. Valdes, L., Perez, I., de Menorval, L.C., Altshuler, E., Fossum, J.O., Rivera, A. (2017). A Simple Way for Targeted Delivery of an Antibiotic: In Vitro Evaluation of a Nanoclay-Based Composite. PLoS One, 12(11), e0187879. DOI: 10.1371/journal.pone.0187879
  30. Viet, P.V., Tran, H.N. (2019). Adsorption and Photocatalytic Degradation of Methylene Blue by Titanium Dioxide Nanotubes at Different pH Conditions. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), 1-6. DOI: 10.1088/2043-6254/ab5100
  31. Ratnawati, R., Enjarlis, E., Husnil, Y.A., Christwardana, M., Slamet, S. (2020). Degradation of Phenol in Pharmaceutical Wastewater using TiO2/Pumice and O3/Active Carbon. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 146-154. DOI: 10.9767/bcrec.15.1.4432.146-154
  32. Saudi, H.A., Adel, G. (2018). The Effect of TiO2 on Optical and Radiation Shielding Properties of BaO B2O3 Glasses. Optics, 7(1), 1-6. DOI: 10.11648/j.optics.20180701.11
  33. Malakootian, M., Nasiri, A., Amiri Gharaghani, M. (2019). Photocatalytic Degradation of Ciprofloxacin Antibiotic by TiO2 Nanoparticles Immobilized on a Glass Plate. Chemical Engineering Communications, 207(1), 56-72. DOI: 10.1080/00986445.2019.1573168
  34. Chudlori, B., Kuswandi, M., Indrayudha, P. (2012). Microbial Patterns and Antibiotic Resistance of Isolates Collected from Specimen Pus in Dr. Moewardi Hospital Period 2012. Pharmacon, 13(2), 70-76
  35. Badal, S., Her, Y.F., Maher, L.J. (2015). Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. Journal of Biological Chemistry, 290(36), 22287-22297. DOI: 10.1074/jbc.M115.671222
  36. Ukpo, G.E., Owolabi, M.A., Imaga, N.O.A., Oribayo, O.O., Ejiroghene, A.J. (2017). Effect of Carica papaya (Linn) Aqueous Leaf Extract on Pharmacokinetic Profile of Ciprofloxacin in Rabbits. Tropical Journal of Pharmaceutical Research, 16(1), 127. DOI: 10.4314/tjpr.v16i1.16
  37. Aggelopoulos, C.A., Hatzisymeon, M., Tataraki, D., Rassias, G. (2020). Remediation of Ciprofloxacin-Contaminated Soil by Nanosecond Pulsed Dielectric Barrier Discharge Plasma: Influencing Factors and Degradation Mechanisms. Chemical Engineering Journal, 393, 124768. DOI: 10.1016/j.cej.2020.124768
  38. Guo, H.G., Gao, N.Y., Chu, W.H., Li, L., Zhang, Y.J., Gu, J.S., Gu, Y.L. (2013). Photochemical Degradation of Ciprofloxacin in UV and UV/H2O2 Process: Kinetics, Parameters, and Products. Environmental Science and Pollution Research, 20(5), 3202-3213. DOI: 10.1007/s11356-012-1229-x
  39. Karl, W., Schneider, J., Wetzstein, H.G. (2006). Outlines of an "Exploding" Network of Metabolites Generated from The Fluoroquinolone Enrofloxacin by The Brown Rot Fungus Gloeophyllum striatum. Appl. Microbiol. Biotechnol., 71(1), 101-113. DOI: 10.1007/s00253-005-0177-5
  40. Pietruszka, J., Hohn, E., Solduga, G. (2006). Synthesis of Enantiomerically Pure Cyclopropyl Trifluoroborates. Synlett, 2006(10), 1531-1534. DOI: 10.1055/s-2006-944185
  41. Ervens, B. (2004). A Modeling Study of Aqueous Production of Dicarboxylic Acids: 1. Chemical Pathways and Speciated Organic Mass Production. Journal of Geophysical Research, 109(D15), 1-20. DOI: 10.1029/2003jd004387
  42. Antonin, V.S., Santos, M.C., Garcia-Segura, S., Brillas, E. (2015). Electrochemical Incineration of The Antibiotic Ciprofloxacin in Sulfate Medium and Synthetic Urine Matrix. Water Res., 83, 31-41. DOI: 10.1016/j.watres.2015.05.066
  43. Amorim, C.L., Moreira, I.S., Maia, A.S., Tiritan, M.E., Castro, P.M. (2014). Biodegradation of Ofloxacin, Norfloxacin, and Ciprofloxacin as Single and Mixed Substrates by Labrys portucalensis F11. Appl. Microbiol. Biotechnol., 98(7), 3181-3190. DOI: 10.1007/s00253-013-5333-8

Last update:

No citation recorded.

Last update:

No citation recorded.