skip to main content

Influence of Operational Parameters on Photocatalytic Degradation of Linuron in Aqueous TiO2 Pillared Montmorillonite Suspension

1Laboratoire de Génie Chimique (LGC), Département de Génie des Procédés, Faculté de Technologie, Université Blida 1, BP 270, 09000 Blida, Algeria

2Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur 1- L04.01.09, 1348 Louvain-la-Neuve, Belgium

Received: 31 May 2021; Revised: 16 Jul 2021; Accepted: 16 Jul 2021; Published: 30 Sep 2021; Available online: 20 Jul 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

TiO2 pillared clay was prepared by intercalation of titan polyoxocation into interlamelar space of an Algerian montmorillonite and used for the photocatalytic degradation of the linuron herbicide as a target pollutant in aqueous solution. The TiO2 pillared montmorillonite (Mont-TiO2) was characterized by X-ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), X-Ray fluorescence (XRF), scanning electronic microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), Fourier transformed infra-red (FT-IR), specific area and porosity determinations. This physicochemical characterization pointed to successful TiO2 pillaring of the clay. The prepared material has porous structure and exhibit a good thermal stability as indicated by its surface area after calcination by microwave. The effects of operating parameters such as catalyst loading, initial pH of the solution and the pollutant concentration on the photocatalytic efficiency and COD removal  were evaluated. Under initial pH of the solution around seven, pollutant concentration of 10 mg/L and 2.5 g/L of catalyst at room temperature, the degradation efficiency and COD removal of linuron was best then the other operating conditions. It was observed that operational parameters play a major role in the photocatalytic degradation process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Pillared clay; TiO2 – Montmorillonite; linuron; Photocatalysis; Water purification
Funding: Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) ; Ministère de l'Enseignement Supérieur et de la recherche Scientifique d'Algérie (MESRS)

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Sánchez-Martin, M.J., Rodriguez-Cruz, M.S., Sánchez-Camazano, M. (2003). Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil-water system. Water Research, 37, 3110–3117. DOI: 10.1016/S0043-1354(03)00155-6
  2. Swarcewicz, M., Gregorczyk, A., Sobczak, J. (2013). Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environmental Monitoring and Assessment, 185, 8109–8114. DOI: 10.1007/s10661-013-3158-7
  3. Farre´, M.J., Domenech, X., Peral, J. (2006). Assessment of photo-Fenton and biological treatment coupling for Diuron and Linuron removal from water. Water Research, 40, 2533–2540. DOI: 10.1016/j.watres.2006.04.034
  4. Katsumata, H., Kobayashi, T., Kaneco, S., Suzuki, T., Ohta, K. (2011). Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 166, 468–473. DOI: 10.1016/j.cej.2010.10.073
  5. Damardji, B., Khalaf, H., Duclaux, L., David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst. Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Applied Clay Science, 44, 201–205. DOI: 10.1016/j.clay.2008.12.010
  6. Tasbihi, M., Cǎlin, I., Šuligoj, A., Fanetti, M., Lavrenčič Štangar, U. (2017). Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. Journal of Photochemistry and Photobiology A: Chemistry, 336, 89–97. DOI: 10.1016/j.jphotochem.2016.12.025
  7. Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L., Yurdakal, S. (2012). Review, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 224–245. DOI: 10.1016/j.jphotochemrev.2012.04.003
  8. Tang, Y., Zhang, G., Liu, C., Luo, S., Xu, X., Chen, L., Wang, B. (2013). Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252–253, 115–122. DOI: 10.1016/j.jhazmat.2013.02.053
  9. Pellegrino, F., Pellutiè, L., Sordello, F., Minero, C., Ortel, E., Hodoroaba, V.-D., Maurino, V. (2017). Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Applied Catalysis B: Environmental, 216, 80–87. DOI: 10.1016/j.apcatb.2017.05.046
  10. Melcher, J., Barth, N., Schilde, C., Kwade, A., Bahnemann, D. (2017). Influence of TiO2 agglomerate and aggregate sizes on photocatalytic activity. Journal of Materials Science, 52(2), 1047–1056. DOI: 10.1007/s10853-016-0400-z
  11. Khalfaoui-Boutoumi, N., Boutoumi, H., Khalaf, H., David, B. (2013). Synthesis and characterization of TiO2–Montmorillonite/ Polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6G. Applied Clay Science, 80–81, 56–62. DOI: 10.1016/j.clay.2013.06.005
  12. Djellabi, R., Ghorab, M.F., Cerrato, G., Morandi, S., Gatto, S., Oldani, V., Di Michele, A., Bianchi, C.L. (2014). Photoactive TiO2–montmorillonite composite for degradation of organic dyes in water. Journal of Photochemistry and Photobiology A: Chemistry, 295, 57–63. DOI: 10.1016/j.jphotochem.2014.08.017
  13. Abdennouri, M., Baalala, M., Galadi, A., El Makhfouk, M., Bensitel, M., Nohair, K., Sadiq, M., Boussaoud, A., Barka, N. (2016). Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arabian Journal of Chemistry, 9, 313–318. DOI: 10.1016/j.arabjc.2011.04.005
  14. Djellabi, R., Ghorab, M.F., Bianchi, C.L., Cerrato, G., Morandi, S. (2016). Removal of Crystal Violet and Hexavalent Chromium using TiO2-Bentonite under Sunlight: Effect of TiO2 Content. Journal of Chemical Engineering & Process Technology, 7(1), 276. DOI: 10.4172/2157-7048.1000276
  15. Khalaf, H., Bouras, O., Perrichon, V. (1997). Synthesis and characterization of Al-pillared and cationic surfactant modified Al pillared Algerian bentonite. Microporous Materials, 8(3–4), 141–150. DOI: 10.1016/S0927-6513(96)00079-X
  16. Sterte, J. (1986). Synthesis and properties of titanium oxide cross linked montmorillonite. Clays and Clay Minerals, 34(6), 658–664. DOI: 10.1346/CCMN.1986.0340606
  17. Del Castillo, H.L., Grange, P. (1993). Preparation and catalytic activity of titanium pillared montmorillonite. Applied Catalysis A: General, 103, 23–34. DOI: 10.1016/0926-860X(93)85170-T
  18. Butman, M.F., Ovchinnikov, N.L., Karasev, N.S., Kochkina, N.E., Agafonov, A.V., Vinogradov, A.V. (2018). Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes. Beilstein Journal of Nanotechnology, 9, 364–378. DOI: 10.3762/bjnano.9.36
  19. Bernier, A., Admaiai, L.F., Grange, P. (1991). Synthesis and characterization of titanium pillared clays. Influence of the temperature of preparation. Applied Catalysis, 77, 269–281. DOI: 10.1016/0166-9834(91)80071-4
  20. Chen, D., Du, G., Zhu, Q., Zhou, F. (2013). Synthesis and characterization of TiO2 pillared montmorillonites: Application for methylene blue degradation. Journal of Colloid and Interface Science, 409, 151–157. DOI: 10.1016/j.jcis.2013.07.049
  21. Barama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., Bakhti-Mohammedi, O. (2009). Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catalysis Today, 141, 385–392. DOI: 10.1016/j.cattod.2008.06.025
  22. Kruse, N., Chenakin, S. (2011). XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Applied Catalysis A: General, 391, 367–376. DOI: 10.1016/j.apcata.2010.05.039
  23. Boudali, L.K., Ghorbel, A., Grange, P., Figueras, F. (2005). Selective catalytic reduction of NO with ammonia over V2O5 supported sulfated titanium-pillared clay catalysts: influence of V2O5 content. Applied Catalysis B: Environmental, 59, 105–111. DOI: 10.1016/j.apcatb.2005.01.007
  24. Long, R.Q., Yang, R.T. (2000). Catalytic Performance and Characterization of VO2+ Exchanged Titania-Pillared Clays for Selective Catalytic Reduction of Nitric Oxide with Ammonia. Journal of Catalysis, 196(1), 73–85. DOI: 10.1006/jcat.2000.3015
  25. Kaneko, T., Shimotsuma, H., Kajikawa, M. (2001). Synthesis and Photocatalytic Activity of Titania Pillared Clays. Journal of Porous Materials, 8, 295–301. DOI: 10.1023/A:1013165014982
  26. Zhang, J., Zhang, S., Cai, W., Zhong, Q. (2013). The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx. Applied Surface Science, 268, 535–540. DOI: 10.1016/j.apsusc.2012.12.169
  27. Liang, X., Qi, F., Liu, P., Wei, G., Su, X., Ma, L., He, H., Lin, X., Xi, Y., Zhu, J., Zhu, R. (2016). Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: The effect of Fe on catalytic activity. Applied Clay Science, 132–133, 96–104. DOI: 10.1016/j.clay.2016.05.022
  28. Ding, X., An, T., Li, G., Zhang, S., Chen, J., Yuan, J., Zhao, H., Chen, H., Sheng, G., Fu, J. (2008). Preparation and characterization of hydrophobic TiO2 pillared clay: The effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. Journal of Colloid and Interface Science, 320, 501–507. DOI: 10.1016/j.jcis.2007.12.042
  29. Hadj Bachir, D., Khalaf, H., Ferroukhi, S., Boutoumi, Y., Schnee, J., Gaigneaux, E.M. (2020). Preparation and characterization of TiO2 pillared clay: effect of palladium and photosensitizer on photocatalytic activity. Research Journal of Chemistry and Environment, 24(3), 60–73
  30. Schoonheydt, R.A., Pinnavaia, T., Lagaly, G., Gangas, N. (1999). Pillared clays and pillared layered solids (technical report). Pure and Applied Chemistry, 71(12), 2367–2371. DOI: 10.1351/pac199971122367
  31. Chen, Q., Kerk, W.T., Soutar, A.M., Zeng, X.T. (2009). Application of dye intercalated bentonite for developing latent fingerprints. Applied Clay Science, 44, 156–160
  32. Sing, K.S.W., Everett, D.H. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603–619. DOI: 10.1351/pac198557040603
  33. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723–1732. DOI: 10.1021/ja01864a025
  34. Fatimah, I., Nurillahi, R., Sahroni, I., Muraza, O. (2019). TiO2-pillared saponite and photosensitization using a ruthenium complex for photocatalytic enhancement of the photodegradation of bromophenol blue. Applied Clay Science, 183, 105–302. DOI: 10.1016/j.clay.2019.105302
  35. Yamanaka, S., Makita, K. (1995). Optical and Electrochemical Properties of Titania Pillared. Journal of Porous Materials, 1, 29–41. DOI: 10.1007/BF00486522
  36. Kohno, Y., Kinoshita, R., Yoda, K., Shibata, M., Matsushuma, R., Tomita, Y., Maeda, Y., Kobayashi, K. (2009). Stabilization of naturel anthocyanin by intercalation into montmorillonite. Applied Clay Science, 42, 519–523. DOI: 10.1016/j.clay.2008.06.012
  37. Ahmed, S., Rasul, M.G., Brown, R., Hashib, M.A. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. Journal of Environmental Management, 92, 311–330. DOI: 10.1016/j.jenvman.2010.08.028
  38. Sutaporn, M., Thanyada, R., Nopporn, K., Somchintana, P., Varong, P. (2018). Surface-Dependence of Adsorption and Its Influence on Heterogeneous Photocatalytic Reaction: A Case of Photocatalytic Degradation of Linuron on Zinc Oxide. Catalysis Letters, 148, 873–881. DOI: 10.1007/s10562-018-2300-0
  39. Ahmed, S., Rasul, M.G., Wayde, N.M., Brown, R., Hashib, M.A. (2010). Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 261, 3–18. DOI: 10.1016/j.desal.2010.04.062
  40. Zouaghi, R., Zertal, A., David et, B., Guittonneau, S. (2007). Photocatalytic Degradation of Monolinuron and Linuron in an Aqueous Suspension of Titanium Dioxide Under Simulated Solar Irradiation. Journal of Water Science, 20(2), 163–172. DOI: 10.7202/015810ar
  41. Rao, Y.F., Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes. Effect of anions and reaction mechanism. Journal of Hazardous Materials, 180, 514–523
  42. Bahnemann, W., Muneer, M., Haque, M.M. (2007). Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catalysis Today, 124, 133–148. DOI: 10.1016/j.cattod.2007.03.031
  43. Mazierski, P., Nadolna, J., Lisowski, W., Winiarski, M.J., Gazda, M., Nischk, M., Klimczuk, T., Zaleska-Medynska, A. (2017). Effect of irradiation intensity and initial pollutant concentration on gas phase photocatalytic activity of TiO2 nanotube arrays. Catalysis Today, 284, 19–26. DOI: 10.1016/j.cattod.2016.09.004
  44. Devi, R., Singh, V., Kumar, A. (2008). COD and BOD reduction from coffee processing wastewater using Avacado peel carbon. Bioresource Technology, 99(6), 1853–1860. DOI: 10.1016/j.biortech.2007.03.039
  45. Abd El-Gawad, S.A., Abd El-Aziz, H.M. (2018). Effective removal of chemical oxygen demand and phosphates from aqueous medium using entrapped activated carbon in alginate. MOJ Biology and Medicine, 3(6), 227–236. DOI: 10.15406/mojbm.2018.03.00104
  46. Das, C.P., Patnaik, L.N. (2001). Use of industrial waste for reduction of COD from paper mill effluent. Indian Journal of Environmental Health, 43(1), 21–27
  47. Dyan, M.O., Putra, G.P., Budiyono, B., Sumardiono, S., Kusworo, T.D. (2015). The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR). Waste Technology, 3(1), 7–13. DOI: 10.14710/3.1.7-13

Last update: 2021-10-15 00:37:53

No citation recorded.

Last update: 2021-10-15 00:37:53

No citation recorded.