skip to main content

Comparison of Ex-Situ and In-Situ Transesterification for the Production of Microbial Biodiesel

1Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

2Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

3Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Japan

4 Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India

View all affiliations
Received: 22 May 2021; Revised: 30 Jul 2021; Accepted: 2 Aug 2021; Available online: 14 Aug 2021; Published: 20 Dec 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Microbial biodiesel is converted from microbial lipids via transesterification process. Most microbial biodiesel studies are focusing on the use of microalgal lipids as feedstock. Apart from using microalgae for lipid biosynthesis, lipids can also be extracted from other oleaginous microorganisms like fungi and yeast. However, there are gaps in the studies of lipid production from filamentous fungi, especially in-situ transesterification process. The aim of this project is to compare in-situ with the ex-situ transesterification of fungal biomass from Aspergillus oryzae. In ex-situ transesterification, two methods of lipid extraction, the Soxhlet extraction and the Bligh and Dyer extraction, were performed. For in-situ transesterification, two methods using different catalysts were investigated. Base-catalyzed in-situ transesterification of fungal biomass resulted on the highest Fatty Acid Methyl Esters (FAME) yield. The base-catalyzed in-situ transesterification was further optimized via Central Composite Design (CCD) of Response Surface Methodology (RSM). The parameters investigated were the catalyst loading, methanol to biomass ratio and reaction time. The optimization showed that the highest FAME yield was at 25.1% (w/w) with 10 minutes reaction time, 5% catalyst and 360:1 of the ratio of the methanol to biomass. Based on Analysis of Variance (ANOVA), the model was found to be significant according to the value of “Prob >F” of 0.0028. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Biodiesel; Ex-situ transesterification; In-situ transesterification; Lipid; Solvent extraction
Funding: Ministry of Higher Education Malaysia under contract FRGS/1/2019/TK02/UIAM/02/3

Article Metrics:

  1. Huang, D., Zhou, H., Lin, L. (2012). Biodiesel: an alternative to conventional fuel. Energy Procedia, 16, 1874-1885. DOI: 10.1016/j.egypro.2012.01.287
  2. Roux, J.M., Lamotte, H., Achard, J.L. (2017). An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia, 112, 680-688. DOI: 10.1016/j.egypro.2017.03.1137
  3. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. DOI: 10.1016/j.biotechadv.2007.02.00
  4. Jaikumar, S., Bhatti, S.K., Srinivas, V. (2019). Emission and vibration characteristics of Niger seed oil biodiesel fuelled diesel engine. Journal of Mechanical Engineering and Sciences, 13(4), 5862-5874. DOI: 10.15282/jmes.13.4.2019.11.0467
  5. Thanh, L.T., Okitsu, K., Boi, L.V., Maeda, Y. (2012). Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts, 2(1), 191-222. DOI: 10.3390/catal2010191
  6. Nuhma, M.J., Alias, H., Jazie, A.A, Tahir, M. (2021). Role of Microalgae as a Source for Biofuel Production in the Future: A Short Review. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 396-4123. DOI: 10.9767/bcrec.16.2.10503.396-412
  7. Ahmad, F.B., Zhang, Z., Doherty, W., O'Hara, I. (2016). Microbial oil production from sugarcane bagasse hydrolysates by oleaginous yeast and filamentous fungi. In Proceedings of the 38th Annual Conference of the Australian Society of Sugar Cane Technologists (pp. 251-259). Australian Society of Sugar Cane Technologists-ASSCT
  8. Ahmad, F.B., Zhang, Z., Doherty, W.O., O’Hara, I.M. (2015). A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production. Bioresource Technology, 190, 264-273. DOI: 10.1016/j.biortech.2015.04.083
  9. Ahmad, F.B., Zhang, Z., Doherty, W.O., O’Hara, I.M. (2019). The prospect of microbial oil production and applications from oil palm biomass. Biochemical Engineering Journal, 143, 9-23. DOI: 10.1016/j.bej.2018.12.003
  10. Ochsenreither, K., Glück, C., Stressler, T., Fischer, L., Syldatk, C. (2016). Production strategies and applications of microbial single cell oils. Frontiers in Microbiology, 7, 1539.DOI: 10.3389/fmicb.2016.01539
  11. Sitepu, I.R., Garay, L.A., Sestric, R., Levin, D., Block, D.E., German, J.B., Boundy-Mills, K.L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances, 32(7), 1336-1360. DOI: 10.1016/j.biotechadv.2014.08.003
  12. Ranjan, A., Patil, C., Moholkar, V.S. (2010). Mechanistic assessment of microalgal lipid extraction. Industrial & Engineering Chemistry Research, 49(6), 2979-2985. DOI: 10.1021/ie9016557
  13. Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., Smith, A.G. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21(3), 277-286. DOI: 10.1016/j.copbio.2010.03.005
  14. Sánchez, Á., Cancela, Á., Maceiras, R., Alfonsín, V. (2014). Lipids extraction from microalgae for biodiesel production. In 2014 International Renewable and Sustainable Energy Conference (IRSEC) (pp. 921-924). IEEE. DOI: 10.1109/IRSEC.2014.7059765
  15. Ahmad, F.B., Zhang, Z., Doherty, W.O., O'Hara, I. M. (2016). Evaluation of oil production from oil palm empty fruit bunch by oleaginous micro‐organisms. Biofuels, Bioproducts and Biorefining, 10(4), 378-392. DOI: 10.1002/bbb.1645
  16. Ahmad, F.B., Zhang, Z., Doherty, W.O., O’Hara, I.M. (2018). Optimising extraction of microalgal oil using accelerated solvent extraction by response surface methodology. J. Eng. Sci. Technol., 13, 964-976
  17. Smedes, F., Thomasen, T.K. (1996). Evaluation of the Bligh & Dyer lipid determination method. Marine Pollution Bulletin, 32(8-9), 681-688. DOI: 10.1002/lite.200800074
  18. Ríos, S.D., Castañeda, J., Torras, C., Farriol, X., Salvadó, J. (2013). Lipid extraction methods from microalgal biomass harvested by two different paths: Screening studies toward biodiesel production. Bioresource Technology, 133, 378-388. DOI: 10.1016/j.biortech.2013.01.093
  19. Zhang, X., Yan, S., Tyagi, R.D., Surampalli, R.Y., Valéro, J.R. (2014). Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel. Bioresource Technology, 169, 175-180. DOI: 10.1016/j.biortech.2014.06.108
  20. Laurens, L.M., Quinn, M., Van Wychen, S., Templeton, D.W., Wolfrum, E.J. (2012). Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Analytical and Bioanalytical Chemistry, 403(1), 167-178. DOI: 10.1007/s00216-012-5814-0
  21. Prommuak, C., Pavasant, P., Quitain, A.T., Goto, M., Shotipruk, A. (2012). Microalgal lipid extraction and evaluation of single-step biodiesel production. Engineering Journal, 16(5), 157-166. DOI: 10.4186/ej.2012.16.5.157
  22. Hussain, J., Liu, Y., Lopes, W.A., Druzian, J.I., Souza, C.O., Carvalho, G.C., Nascimento, I.A., Liao, W. (2015). Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality. Applied Biochemistry and Biotechnology, 175(6), 3048-3057. DOI: 10.1007/s12010-015-1486-5
  23. Borges, M.E., Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839-2849. DOI: 10.1016/j.rser.2012.01.071
  24. Talha, N.S., Sulaiman, S. (2016). Overview of catalysts in biodiesel production. ARPN Journal of Engineering and Applied Sciences, 11(1), 439-442
  25. Tanzi, C.D., Vian, M.A., Chemat, F. (2013). New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Bioresource technology, 134, 271-275. DOI: 10.1016/j.biortech.2013.01.168
  26. Shin, H.Y., Ryu, J.H., Bae, S.Y., Crofcheck, C., Crocker, M. (2014). Lipid extraction from Scenedesmus sp. microalgae for biodiesel production using hot compressed hexane. Fuel, 130, 66-69. DOI: 10.1016/j.fuel.2014.04.023
  27. Li, Y., Naghdi, F.G., Garg, S., Adarme-Vega, T.C., Thurecht, K.J., Ghafor, W.A., Tannock, S., Schenk, P.M. (2014). A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microbial Cell Factories, 13(1), 1-9. DOI: 10.1186/1475-2859-13-14
  28. Wu, L., Wei, T.Y., Tong, Z.F., Zou, Y., Lin, Z.J., Sun, J.H. (2016). Bentonite-enhanced biodiesel production by NaOH-catalyzed transesterification of soybean oil with methanol. Fuel Processing Technology, 144, 334-340. DOI: 10.1016/j.fuproc.2015.12.017
  29. Velasquez-Orta, S.B., Lee, J.G.M., Harvey, A.P. (2013). Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochemical Engineering Journal, 76, 83-89. DOI: 10.1016/j.bej.2013.04.003
  30. Gargano, I., Marotta, R., Andreozzi, R., Olivieri, G., Marzocchella, A., Spasiano, D., Pinto, G., Pollio, A. (2016). Alkaline direct transesterification of different species of Stichococcus for bio-oil production. New Biotechnology, 33(6), 797-806. DOI: 10.1016/j.nbt.2016.07.012
  31. Tran, D.T., Chen, C.L., Chang, J.S. (2013). Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresource Technology, 135, 213-221. DOI: 10.1016/j.biortech.2012.09.101
  32. Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., Morones-Ramírez, J.R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178. DOI: 10.1186/s12934-019-1228-4
  33. Ahmad, F.B., Zhang, Z., Doherty, W.O.S., Te'o, V.S.J., O'Hara, I.M. (2017). Improved microbial oil production from oil palm empty fruit bunch by Mucor plumbeus. Fuel, 194, 180-187. DOI: 10.1016/j.fuel.2017.01.013

Last update:

No citation recorded.

Last update:

No citation recorded.