skip to main content

The Utilization of Mg-Al/Cu as Selective Adsorbent for Cationic Synthetic Dyes

1Graduate School of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir 30662, South Sumatra, Indonesia

2Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

3Research Center of Inorganic Materials and Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa Bukit Besar Palembang 30139, South Sumatra, Indonesia

Received: 21 May 2021; Revised: 23 Jul 2021; Accepted: 24 Jul 2021; Available online: 26 Jul 2021; Published: 20 Dec 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Mg-Al-LDH is a chemical compound produced through co-precipitation technique and modified with Cu(NO3)2.6H2O to form Mg-Al/Cu. However, the research on the capability of these compounds for adsorbing mixtures of cationic dyes as well as malachite green (MG), methylene blue (MB), and Rodhamine-B (Rh-B) has not been carried out. Therefore, this research aims to determine the performance of Mg-Al-LDH and Mg-Al/Cu for removing cationic dyes. The materials used were characterized by using XRD powder, FT-IR, and N2 adsorption desorption. The Adsorption process was conducted by batch system and several effects were investigated, such as kinetic parameter, isotherm, and the temperature condition. The stability feature of Mg-Al-LDH and Mg-Al/Cu was obtained from the regeneration process in the five cycles. The results presented that Mg-Al/Cu was effectively produced, which was indicated by the formation of layer at 10.792° (003), 22.94° (006), 35.53° (112), 55.78° (110), and  56.59° (116). Mg-Al-LDH and Mg-Al/Cu were found to adsorbed MG than the other cationic dyes with adsorption capacity of 68.996 mg/g and 104.167 mg/g, respectively. The unique properties of Mg-Al/Cu includes, structural stability towards the reuse of adsorbent subsequently for five times, without significant decrease of adsorption capacity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Malachite Green; Layered Double Hydroxide; Mg-Al ; Mg-Al/Cu Adsorption
Funding: Hibah Disertasi Doktor Dikti under contract 150/E4.1/AK.04.PT/2021

Article Metrics:

  1. Karami, Z., Jouyandeh, M., Ali, J.A., Ganjali, M.R., Aghazadeh, M., Maadani, M., Rallini, M., Luzi, F., Torre, L., Puglia, D., Akbari, V., Saeb, M.R. (2019). Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH. Progress in Organic Coatings, 136, 105228. DOI: 10.1016/j.porgcoat.2019.105228
  2. Zhao, G., Liu, L., Li, C., Zhang, T., Yan, T., Yu, J., Jiang, X., Jiao, F. (2018). Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 367, 302–311. DOI: 10.1016/j.jphotochem.2018.08.048
  3. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science, 157, 86–91. DOI: 10.1016/j.clay.2018.02.023
  4. Vinsiah, R., Mohadi, R., Lesbani, A. (2017). Performance of Graphite for Congo Red and Direct Orange Adsorption. Indonesian Journal of Environmental Management and Sustainability, 4(4), 125–113. DOI: 10.26554/ijems.2020.4.4.125-132
  5. Hidayati, N., Mohadi, R., Elfita, E., Lesbani, A. (2020). Malachite Green Removal by Zn/Al-citrate LDHs in Aqueous Solution. Science and Technology Indonesia, 5, 59–61. DOI: 10.26554/sti.2020.5.2.59-61
  6. Islam, M.A., Ali, I., Karim, S.M.A., Hossain Firoz, M.S., Chowdhury, A.N., Morton, D.W., Angove, M.J. (2019). Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 32, 100911. DOI: 10.1016/j.jwpe.2019.100911
  7. Ruan, X., Chen, Y., Chen, H., Qian, G., Frost, R.L. (2016). Sorption behavior of methyl orange from aqueous solution on organic matter and reduced graphene oxides modified Ni-Cr layered double hydroxides. Chemical Engineering Journal, 297, 295–303. DOI: 10.1016/j.cej.2016.01.041
  8. Siregar, P.M.S.B.N., Palapa, N.R., Wijaya, A., Fitri, E.S., Lesbani, A. (2021). Structural stability of Ni/Al layered double hydroxide supported on graphite and biochar toward adsorption of congo red. Science and Technology Indonesia, 6(2), 85-95. DOI: 10.26554/sti.2021.6.2.85-95
  9. Oktriyanti, M., Palapa, N.R., Mohadi, R., Lesbani, A. (2019). Modification Of Zn-Cr Layered Double Hydroxide With Keggin Ion. Indonesian Journal of Environmental Management and Sustainability, 3, 93–99. DOI: 10.26554/ijems.2019.3.3.93-99
  10. Kang, Y.G., Yoon, H., Lee, C.S., Kim, E.J., Chang, Y.S. (2019). Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite. Water Research, 151, 413–422. DOI: 10.1016/j.watres.2018.12.038
  11. Xu, Y., Li, Z., Su, K., Fan, T., Cao, L. (2018). Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chemical Engineering Journal, 341, 371–382. DOI: 10.1016/j.cej.2018.02.048
  12. Wang, Y., Jiang, F., Chen, J., Sun, X., Xian, T., Yang, H. (2020). In situ construction of CNT/cus hybrids and their application in photodegradation for removing organic dyes. Nanomaterials, 10(1), 178. DOI: 10.3390/nano10010178
  13. Popli, S., Patel, U.D. (2015). Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. International Journal of Environmental Science and Technology, 12, 405–420. DOI: 10.1007/s13762-014-0499-x
  14. Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J., Wang, X. (2019). Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 1, 45–73. DOI: 10.1007/s42773-019-00006-5
  15. Badri, A.F., Mohadi, R., Lesbani, A. (2021). Adsorptive capacity of malachite green onto Mg/M3+ (M3+=Al and Cr) LDHs. Global NEST Journal, 23, 1–8. DOI: 10.30955/gnj.003443
  16. Mohadi, R., Palapa, N.R., Lesbani, A. (2021). Preparation of Ca/Al-Layered Double Hydroxides/Biochar Composite with High Adsorption Capacity and Selectivity toward Cationic Dyes in Aqueous. Bulletin of Chemical Reaction Engineering & Catalysis, 16, 244–252. DOI: 10.9767/bcrec.16.2.10211.244-252
  17. Taher, T., Christina, M.M., Said, M., Hidayati, N., Ferlinahayati, F., Lesbani, A. (2019). Removal of iron(II) using intercalated Ca/Al layered double hydroxides with [-SiW12O40]4-. Bulletin of Chemical Reaction Engineering & Catalysis, 14, 260–267. DOI: 10.9767/bcrec.14.2.2880.260-267
  18. Mohadi, R., Hanafiah, Z., Hermansyah, H., Zulkifli, H. (2017). Adsorption of procion red and congo red dyes using microalgae Spirulina sp. Science and Technology Indonesia, 2, 102–104. DOI: 10.26554/sti.2017.2.4.102-104
  19. Shan, R.-r., Yan, L.-g., Yang, Y.-m., Yang, K., Yu, S.-j., Yu, H.-q., Zhu, B.-c., Du, B. (2015). Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide. Journal of Industrial and Engineering Chemistry, 21, 561–568. DOI: 10.1016/j.jiec.2014.03.019
  20. Ouassif, H., Moujahid, E.M., Lahkale, R., Sadik, R., Bouragba, F.Z., Sabbar, E.M., Diouri, M. (2020). Zinc-Aluminum layered double hydroxide: High efficient removal by adsorption of tartrazine dye from aqueous solution. Surfaces and Interfaces, 18, 100401. DOI: 10.1016/j.surfin.2019.100401
  21. Ali, B., Naceur, B., Abdelkader, E., Karima, E. (2020). Competitive adsorption of binary dye from aqueous solutions using calcined layered double hydroxides. International Journal of Environmental Analytical Chemistry, 100, 1–20. DOI: 10.1080/03067319.2020.1766035
  22. Grover, A., Mohiuddin, I., Malik, A.K., Aulakh, J.S., Kim, K.-H. (2019). Zn-Al layered double hydroxides intercalated with surfactant: Synthesis and applications for efficient removal of organic dyes. Journal of Cleaner Production, 240, 118090. DOI: 10.1016/j.jclepro.2019.118090
  23. Berner, S., Araya, P., Govan, J., Palza, H. (2018). Cu/Al and Cu/Cr based layered double hydroxide nanoparticles as adsorption materials for water treatment. Journal of Industrial and Engineering Chemistry, 59, 134–140. DOI: 10.1016/j.jiec.2017.10.016
  24. Badri, A.F., Siregar, P.M.S.B.N., Palapa, N.R., Mohadi, R., Mardiyanto, M., Lesbani, A. (2021). Mg-Al/Biochar Composite with Stable Structure for Malachite Green Adsorption from Aqueous Solutions. Bulletin of Chemical Reaction Engineering & Catalysis, 16, 149–160. DOI: 10.9767/bcrec.16.1.10270.149-160
  25. Xu, H., Zhu, S., Xia, M., Wang, F. (2021). Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: Experimental and adsorption mechanism study. Journal of Hazardous Materials, 402, 123815. DOI: 10.1016/j.jhazmat.2020.123815
  26. Mahjoubi, F.Z., Elhalil, A., Elmoubarki, R., Sadiq, M., Khalidi, A., Cherkaoui, O., Barka, N. (2017). Performance of Zn‐, Mg‐ and Ni‐Al layered double hydroxides in treating an industrial textile wastewater. Journal of Applied Surfaces and Interfaces, 2, 1–11. DOI: 10.48442/IMIST.PRSM/jasi-v2i1-3.10033
  27. George, G., Saravanakumar, M.P. (2018). Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box-Behnken design. Environmental Science and Pollution Research, 25, 30236–30254. DOI: 10.1007/s11356-018-3001-3
  28. Zhou, H., Jiang, Z., Wei, S. (2018). A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Applied Clay Science, 153, 29–37. DOI: 10.1016/j.clay.2017.11.033
  29. Lafi, R., Charradi, K., Djebbi, M.A., Ben Haj Amara, A., Hafiane, A. (2016). Adsorption study of Congo red dye from aqueous solution to Mg-Al-layered double hydroxide. Advanced Powder Technology, 27, 232–237. DOI: 10.1016/j.apt.2015.12.004
  30. Maziarz, P., Matusik, J., Strączek, T., Kapusta, C., Woch, W.M., Tokarz, W., Radziszewska, A., Leiviskä, T. (2019). Highly effective magnet-responsive LDH-Fe oxide composite adsorbents for As(V) removal. Chemical Engineering Journal, 362, 207–216. DOI: 10.1016/j.cej.2019.01.017
  31. Elmoubarki, R., Mahjoubi, F.Z., Elhalil, A., Tounsadi, H., Abdennouri, M., Sadiq, M., Qourzal, S., Zouhri, A., Barka, N. (2017). Ni/Fe and Mg/Fe Layered Double Hydroxides and Their Calcined Derivatives: Preparation, Characterization and Application on Textile Dyes Removal. Journal of Materials Research and Technology, 6, 271–283. DOI: 10.1016/j.jmrt.2016.09.007
  32. Elkhider, K.H.A., Ihsanullah, I., Zubair, M., Manzar, M.S., Mu’azu, N.D., Al-Harthi, M.A. (2020). Synthesis, Characterization and Dye Adsorption Performance of Strontium Ferrite decorated Bentonite-CoNiAl Magnetic Composite. Arabian Journal for Science and Engineering, 45, 7397–7408. DOI: 10.1007/s13369-020-04544-0
  33. Chebli, D., Bouguettoucha, A., Reffas, A., Tiar, C., Boutahala, M., Gulyas, H., Amrane, A. (2016). Removal of the anionic dye Biebrich scarlet from water by adsorption to calcined and non-calcined Mg–Al layered double hydroxides. Desalination and Water Treatment, 57, 22061–22073. DOI: 10.1080/19443994.2015.1128365
  34. Muangthong-On, T., Wannapeera, J., Ohgaki, H., Miura, K. (2017). TG-DSC Study to Measure Heat of Desorption of Water during the Thermal Drying of Coal and to Examine the Role of Adsorption of Water Vapor for Examining Spontaneous Heating of Coal over 100 °c. Energy and Fuels, 31, 10691–10698. DOI: 10.1021/acs.energyfuels.7b01836
  35. George, G., Saravanakumar, M.P. (2018). Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box-Behnken design. Environmental Science and Pollution Research, 25, 30236–30254. DOI: 10.1007/s11356-018-3001-3
  36. Palapa, N.R., Juleanti, N., Normah, N., Mohadi, R., Taher, T., Rachmat, A., Lesbani, A. (2020). Copper Aluminum Layered Double Hydroxide Modified by Biochar and its Application as an Adsorbent for Procion Red. Journal of Water and Environment Technology, 18, 359–371. DOI: 10.2965/JWET.20-059
  37. Argumedo-Delira, R., Gómez-Martínez, M.J., Uribe-Kaffure, R. (2021). Trichoderma biomass as an alternative for removal of congo red and malachite green industrial dyes. Applied Sciences, 11(1), 448. DOI: 10.3390/app11010448
  38. Parlayıcı, Ş., Pehlivan, E. (2021). Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. International Journal of Phytoremediation, 23, 26–40. DOI: 10.1080/15226514.2020.1788502
  39. Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130–138. DOI: 10.1016/j.jiec.2015.11.001
  40. Hijab, M., Saleem, J., Parthasarathy, P., Mackey, H.R., McKay, G. (2021). Two-stage optimisation for malachite green removal using activated date pits. Biomass Conversion and Biorefinery, 11, 727–740. DOI: 10.1007/s13399-020-00813-y
  41. Salamat, S., Mohammadnia, E., Hadavifar, M. (2021). K inetics and Adsorption Investigation of Malachite Green onto Thiolated Graphene Oxide Nanostructures. Journal of Water and Wastewater, 31(6), 1–11. DOI: 10.22093/wwj.2020.208052.2951
  42. Azad, F.N., Ghaedi, M., Dashtian, K., Hajati, S., Goudarzi, A., Jamshidi, M. (2015). Enhanced simultaneous removal of malachite green and safranin O by ZnO nanorod-loaded activated carbon: Modeling, optimization and adsorption isotherms. New Journal of Chemistry, 39, 7998–8005. DOI: 10.1039/c5nj01281c
  43. Mashkoor, F., Nasar, A. (2019). Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. Journal of Molecular Liquids, 274, 315–327. DOI: 10.1016/j.molliq.2018.10.119
  44. Lesbani, A., Taher, T., Palapa, N.R., Mohadi, R., Rachmat, A., Mardiyanto. (2020). Preparation and utilization of Keggin-type polyoxometalate intercalated Ni–Fe layered double hydroxides for enhanced adsorptive removal of cationic dye. SN Applied Sciences, 2, 4–7. DOI: 10.1007/s42452-020-2300-8
  45. Amin, R.M., Taha, M., Abdel Moaty, S.A., Abo El-Ela, F.I., Nassar, H.F., Gadelhak, Y., Mahmoud, R.K. (2019). Gamma radiation as a green method to enhance the dielectric behaviour, magnetization, antibacterial activity and dye removal capacity of Co-Fe LDH nanosheets. RSC Advances, 9, 32544–32561. DOI: 10.1039/c9ra06509a
  46. Mahmoud, R.K., Kotp, A.A., El-Deen, A.G.A., Farghali, A., Abo El-Ela, F.I. (2020). Novel and Effective Zn-Al-GA LDH Anchored on Nanofibers for High-Performance Heavy Metal Removal and Organic Decontamination: Bioremediation Approach. Water, Air, and Soil Pollution, 231, 363. DOI: 10.1007/s11270-020-04629-4
  47. Daud, M., Hai, A., Banat, F., Wazir, M.B., Habib, M., Bharath, G., Al-Harthi, M.A. (2019). A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)– Containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids, 288, 110989. DOI: 10.1016/j.molliq.2019.110989

Last update:

No citation recorded.

Last update:

No citation recorded.