skip to main content

Synthesis, Crystal Structure of Tetra-Nuclear Macrocyclic Zn(II) Complex and Its Application as Catalyst for Oxidation of Benzyl Alcohol

1College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China

2Kohodo (Weifang Free Trade Zone) Hydrogen Technology Co., Ltd, Weifang 261031, China

3Shenzhen Kohodo Hydrogen Energy Co., Ltd., Shenzhen 518109, China

Received: 8 May 2021; Revised: 6 Sep 2021; Accepted: 6 Sep 2021; Available online: 7 Sep 2021; Published: 20 Dec 2021.
Editor(s): Hadi Nur
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

A new six coordinated tetra-nuclear macrocyclic Zn(II) complex, ZnL4(Phen)2 (1) (HL= 3-bromo-2-hydroxybenzaldehyde-pyridine-2-carbohydrazone, Phen = 1,10-phenanthroline) has been synthesized by the self-assembly of 3-bromo-2-hydroxybenzaldehyde-pyridine-2-carbohydrazone, Zn(CH3COO)2•2H2O, NaOH and 1,10-phenanthroline in water/ethanol (v:v = 1:3) solution. Complex 1 was characterized by elemental analysis, infra red (IR), and single-crystal X-ray diffraction (XRD) analysis. The results show that Zn1 and Zn1b ions are six-coordinated with a distorted octahedral geometric configuration by four O atoms of two different L ligands and two N atoms of two different L ligands, Zn1a and Zn1c ions are also six-coordinated with a distorted octahedral geometric configuration by two N atoms of two different L ligands, two N atoms of Phen ligands and two O atoms of two different L ligands. Complex (1) forms 3D network structure by the - interaction. The selective oxidation reactions of benzyl alcohols catalyzed by complex (1) was investigated. The highest benzyl alcohol conversion and benzaldehyde selectivity were obtained at 100 °C for 4 h under 5 bar of O2. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Hydrazone; Tetra-nuclear macrocyclic Zn(II) complex; Synthesis; Structural characterization; Oxidation of benzyl alcohol
Funding: National Natural Science Foundation of China under contract No. 21171132; Science Foundation of Weifang ; Science Foundation of Weiyuan Scholars Innovation Team

Article Metrics:

  1. Keypour, H., Rezaei, M.T., Jamshidi, M., Farida, S.H.M., Karamian, R. (2021). Synthesis, cytotoxicity, and antioxidant activity by in vitro and molecular docking studies of an asymmetrical diamine containing piperazine moiety and related Zn(II), Cd(II) and Mn(II) macrocyclic schif base complexes. Inorganic Chemistry Communications, 125, 108443. DOI: 10.1016/j.inoche.2021.108443
  2. Kou, H.Z., Wang, Y., Ding, P.P., Cheng, X.Z., Zhou, G.Q. (2020). Synthesis, crystal structure, phosphate hydrolysis activity and antibacterial activity of macrocyclic dinuclear Zn(II) complex with benzyl pendant-arms. Journal of Molecular Structure, 1216, 128299. DOI: 10.1016/j.molstruc.2020.128299
  3. Keypour, H., Mahmoudabadi, M., Shooshtari, A., Hosseinzadeh, L., Mohsenzadeh, F., Gable, R.W. (2017). Synthesis of Mn(II) and Zn(II) complexes with new macrocyclic Schiff-base ligands containing piperazine moiety: spectroscopic, structural, cytotoxic and antibacterial properties. Polyhedron, 127, 345-354. DOI: 10.1016/j.poly.2017.02.008
  4. Tai, X.S., Meng, Q.G., Liu, L.L. (2016). Synthesis, crystal structure, and cytotoxic activity of a novel eight-coordinated dinuclear Ca(II)-Schiff base complex. Crystals, 6, 109. DOI: 10.3390/cryst6090109
  5. Chang, F.F., Li, W.Q., Feng, F.D., Huang, W. (2019). Construction and photoluminescent properties of Schiff-base macrocyclic mono-/di-/trinuclear ZnII complexes with the common 2-ethylthiophene pendant arm. Inorganic Chemistry, 58, 7812-7821. DOI: 10.1021/acs.inorgchem.9b00454
  6. Chakraborty, T., Dasgupta, S., Bhattacharyya, A., Zangrando, E., Escudero, D., Das, D. (2019). A macrocyclic tetranuclear ZnII complex as a receptor for selective dual fluorescence sensing of F− and AcO−: effect of a macrocyclic ligand. New Journal of Chemistry, 43, 13152-13161. DOI: 10.1039/C9NJ03481A
  7. Zhang, K., Chen, T.T., Shen, Y.J., Zhang, L.F., Ma, S., Huang, Y. (2020). Luminescent macrocyclic Sm(III) complex probe for turn-off fluorescent and colorimetric water detection in organic solvents and liquid fuels. Sensors and Actuators B: Chemical, 311, 127887. DOI: 10.1016/j.snb.2020.127887
  8. Yamamoto, K., Higuchi, K., Ogawa, M., Sogawa, H., Kuwata, S., Hayashi, Y., Kawauchi, S., Takata, T. (2019). Macrocyclic metal complexes bearing rigid polyaromatic ligands: synthesis and catalytic activity. Chemistry-An Asian Journal, 15, 356-359. DOI: 10.1002/asia.201901561
  9. Ni, Y.X., Lu, Y., Zhang, K., Chen, J. (2021). Aromaticity/antiaromaticity effect on activity of transition metal macrocyclic complexes towards electrocatalytic oxygen reduction. ChemSusChem, 14, 1835-1839. DOI: 10.1002/cssc.202100182
  10. Tammeveski, K., Zagal, J.H. (2018). Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application. Current Opinion in Electrochemistry, 9, 207-213. DOI: 10.1016/j.coelec.2018.04.001
  11. Tak, R.K., Kumar, M., Nazish, M., Menapara, T.K., Kureshy, R.I., Khan, N.U.H. (2018). Development of recyclable chiral macrocyclic metal complexes for asymmetric aminolysis of epoxides: Application for the synthesis of an enantiopure oxazolidine ring. New Journal of Chemistry, 42, 15325-15331. DOI: 10.1039/c8nj02960a
  12. Sun, L.B., Huang, Z.F., Reddu, V., Su, T., Fisher, A.C., Wang, X. (2020). A planar, conjugated N4-macrocyclic cobalt complex for heterogeneous electrocatalytic CO2 reduction with high activity. Angewandte Chemie, 132, 17252-17257. DOI: 10.1002/anie.202007445
  13. Rajak, S., Schott, O., Kaur, P., Maris, T., Hanan, G.S., Duong, A. (2020). Design of a [FeFe] macrocyclic metallotecton for light-driven hydrogen evolution reaction. International Journal of Hydrogen Energy, 45, 2699-2708. DOI: 10.1016/j.ijhydene.2019.11.141
  14. Pablo, G.B., Dooshaye, M., Marcos, G.S., Primavera, P., Carolina, G.S., Jordi, B.B., Antoni, L. (2020). Redox metal-ligand cooperativity enables robust and efficient water oxidation catalysis at neutral pH with macrocyclic copper complexes. Journal of the American Chemical Society, 142, 17434-17446. DOI: 10.1021/jacs.0c06515
  15. Li, Y., Zou, X.Z., Qiu, W.D. (2018). Design and synthesis of porous 3D MOFs hybrid functional materials encapsulating macrocyclic metal complexes. Inorganic Chemistry Communications, 94, 114-118. DOI: 10.1016/j.inoche.2018.06.012
  16. Anna Benedict, B. (2019). Synthesis and spectral characterization of macrocyclic lanthanide(III) complexes of an 18-membered tetraaza tetraimine Schiff bases. Main Group Chemistry, 18, 1-13
  17. Ragupathi, C., Vijaya, J.J., Narayanan, S. (2015). Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: A comparison of conventional and microwave methods. Ceramics International, 41, 2069-2080. DOI: 10.1016/j.ceramint.2014.10.002
  18. Diniz, J., Nunes, C.D., Monteiro O.C. (2020). Novel approach to synthesise MoO3-TiO2 nanocomposites for the photo-assisted oxidation of benzyl alcohol to benzaldehyde. Inorganic Chemistry Communications, 119, 108099. DOI: 10.1016/j.inoche.2020.108099
  19. Farrag, M., Yahya, R. (2020). Selective solar photocatalytic oxidation of benzyl alcohol to benzaldehyde over monodispersed Cu nanoclusters/TiO2/activated carbon nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 396, 112527. DOI: 10.1016/j.jphotochem.2020.112527
  20. Si, J.Y., Liu, Y., Chang, S.Z., Wu, D., Tian, B.Z., Zhang, J.L. (2017). AgBr@TiO/GO ternary composites with enhanced photocatalytic activity for oxidation of benzyl alcohol to benzaldehyde. Research on Chemical Intermediates, 43, 2067-2080. DOI: 10.1007/s11164-016-2747-9
  21. Christianah, A.A., Dimakatso, J.M., Ndzondelelo, B., Reinout, M. (2021). Highly tunable selectivity to benzaldehyde over Pd/ZrO2 catalysts in Oppenauer oxidation of benzyl alcohol using acetone as H-acceptor. Applied Catalysis A: General, 613, 118022. DOI: 10.1016/j.apcata.2021.118022
  22. Liu, L.L., Tai, X.S., Zhou, X.J., Hou, J.X., Zhang, Z.H. (2019). Bimetallic AueNi alloy nanoparticles in a metaleorganic framework (MIL-101) as efficient heterogeneous catalysts for selective oxidation of benzyl alcohol into benzaldehyde. Journal of Alloys and Compounds, 790, 326-336. DOI: 10.1016/j.jallcom.2019.03.186
  23. Tai, X.S., Liu, L.L., Yin, J. (2014). Synthesis, crystal structure of tetra-nuclear macrocyclic Cu(II) complex material and its application as catalysts for A3 coupling reaction. Journal of Inorganic and Organometallic Polymers and Materials, 24, 1014-1020. DOI: 10.1007/s10904-014-0077-1
  24. Tai, X.S., Wang, X., Li, P.F. (2017). Synthesis, crystal structure, and luminescent property of a Cd(II) coordination polymer with a N-nicotinoylglycine ligand. Crystals, 7, 33. DOI: 10.3390/cryst7020033
  25. Tai, X.S., Li, P.F., Liu, L.L. (2018). Synthesis, crystal structure and catalytic activity of a calcuim(II) complex with 4-formylbenzene-1,3-disulfonate-isonicotinic acid hydrazone. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 429-435. DOI: 10.9767/bcrec.13.3.1961.429-435
  26. Wang, L.H., Wang, X., Tai, X.S. (2017). Synthesis, Crystal Structure and Catalytic Activity of a 1D Chained Ca(II) Coordination Polymer with 3,5-Bis(4-pyridylmethoxy)benzoate Ligand. Crystals, 7, 72. DOI: 10.3390/cryst7030072
  27. Tai, X.S., Jiang, J,H. (2012). Synthesis, crystal structure and luminescent property of Cd(II) complex with N-benzenesulphonyl-L-leucine. Materials, 5, 1626-1634. DOI: 10.3390/ma5091626
  28. Tai, X.S., Wang, X. (2017). Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands. Crystallography Reports, 62, 242-245. DOI: 10.1134/S1063774517020286
  29. Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-8. DOI: 10.1107/S2053229614024218
  30. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2009). OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339-341. DOI: 10.1107/S0021889808042726
  31. Yin, J., Zhang, F.J., Tai, X.S. (2021). The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn. Zeitschrift für Kristallographie. New Crystal Structures, 236, 45-46. DOI: 10.1515/ncrs-2020-0467
  32. Tai, X.S., Zhou X.J., Liu, L.L., Cao, S.H., Wang, L.H. (2020). The crystal structure of catena-poly[(µ2-2-((3-bromo-2-oxidobenzylidene)amino)acetato-k4O,N,O’:O’’)-(dimethylformamide-k1O)]zinc(II), C12H13N2O4BrZn. Zeitschrift für Kristallographie. New Crystal Structures, 235, 901-902. DOI: 10.1515/ncrs-2020-0090
  33. Wang, L.H., Liang, L., Tai, X.S. (2020). The crystal structure 2,2’-bipyridine-k2N,N’-(2-(3-amino-4-chlorobenzoyl)benzoato-k1O)-(2-(3-amino-4-chlorobenzoyl)benzoato-k2O,O’)zinc(II)-ethanol (1/1), C40H32Cl2N4O7Zn. Zeitschrift für Kristallographie. New Crystal Structures, 235, 1281-1283. DOI: 10.1515/ncrs-2020-0261
  34. Nabae, Y., Mikuni, M., Takusari, N., Hayakawa, T., Masa-aki Kakimoto, M. (2017). Aerobic oxidation of benzyl alcohol over TEMPO-functionalized polyimide as a heterogeneous catalyst. High Performance Polymers, 29, 646-650. DOI: 10.1177/0954008317696565
  35. Li, Y., Sun, B., Yang, W. (2016). Synthesis of conjugated Mn porphyrin polymers with p-phenylenediamine building blocks and effificient aerobic catalytic oxidation of alcohols. Applied Catalysis A: General, 515, 164-169. DOI: 10.1016/j.apcata.2016.02.003
  36. Asgharnejad, L., Abbasi, A., Najafifi, M., Janczak, J. (2019). One-, two- and three-dimensional coordination polymers based on copper paddle-wheel SBUs as selective catalysts for benzyl alcohol oxidation. Journal of Solid State Chemistry, 277, 187-194. DOI: 10.1016/j.jssc.2019.06.011

Last update:

No citation recorded.

Last update:

No citation recorded.