skip to main content

Ni Nanoparticles on Reducible Metal Oxides (Sm2O3, CeO2, ZnO) as Catalysts for CO2 Methanation

Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam

Received: 4 May 2021; Revised: 6 Jul 2021; Accepted: 6 Jul 2021; Published: 30 Sep 2021; Available online: 8 Jul 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The activity of reducible metal oxide Sm2O3, CeO2, and ZnO as Ni nanoparticles support was investigated for CO2 methanation reaction. CO2 methanation was carried out between 200 °C to 450 °C with the optimum catalytic activity was observed at 450 °C. The reducibility of the catalysts has been comparatively studied using H2-Temperature Reduction Temperature (TPR) method. The H2-TPR analysis also elucidated the formation of surface oxygen vacancies at temperature above 600 °C for 5Ni/Sm2O3 and 5Ni/CeO2. The Sm2O3 showed superior activity than CeO2 presumably due to the transition of the crystalline phases under reducing environment. However, the formation of NiZn alloy in 5Ni/ZnO reduced the ability of Ni to catalyze methanation reaction. A highly dispersed Ni on Sm2O3 created a large metal/support interfacial interaction to give 69% of CO2 conversion with 100% selectivity at 450 °C. The 5Ni/Sm2O3 exhibited superior catalytic performances with an apparent phase transition from cubic to a mixture of cubic and monoclinic phases over a long reaction, presumably responsible for the enhanced conversion after 10 h of reaction. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: Ni nanoparticles; metal oxides (Sm2O3, CeO2, ZnO); CO2; methanation
Funding: Universiti Brunei Darussalam under contract UBD/RSCH/URC/RG(b)/2019/012

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Su, X., Xu, J., Liang, B., Duan, H., Hou, B., Huang, Y. (2016). Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of Energy Chemistry, 25(4), 553–565. DOI: 10.1016/j.jechem.2016.03.009
  2. Boggula, R.R., Fischer, D., Casaretto, R., Born, J. (2020). Methanation potential: Suitable catalyst and optimized process conditions for upgrading biogas to reach gas grid requirements. Biomass and Bioenergy, 133, 105447. DOI: 10.1016/j.biombioe.2019.105447
  3. Garbarino, G., Riani, P., Magistri, L., Busca, G. (2014). A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. International Journal of Hydrogen Energy, 39(22), 11557–11565. DOI: 10.1016/j.ijhydene.2014.05.111
  4. Everett, O.E., Zonetti, P.C., Alves, O.C., de Avillez, R.R., Appel, L.G. (2020). The role of oxygen vacancies in the CO2 methanation employing Ni/ZrO2 doped with Ca. International Journal of Hydrogen Energy, 45(11), 6352–6359. DOI: 10.1016/j.ijhydene.2019.12.140
  5. Makdee, A., Chanapattharapol, K.C., Kidkhunthod, P., Poo-arporn, Y., Ohno, T. (2020). The role of Ce addition in catalytic activity enhancement of TiO2-supported Ni for CO2 methanation reaction. RSC Advances, 10(45), 26952–26971. DOI: 10.1039/D0RA04934D
  6. Gac, W., Zawadzki, W., Rotko, M., Słowik, G., Greluk, M. (2019). CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies. Topics in Catalysis, 62(5), 524–534. DOI: 10.1007/s11244-019-01148-3
  7. Zeng, L., Wang, Y., Li, Z., Song, Y., Zhang, J., Wang, J., He, X., Wang, C., Lin, W. (2020). Highly Dispersed Ni Catalyst on Metal–Organic Framework-Derived Porous Hydrous Zirconia for CO2 Methanation. ACS Applied Materials & Interfaces, 12(15), 17436–17442. DOI: 10.1021/acsami.9b23277
  8. Guilera, J., del Valle, J., Alarcón, A., Díaz, J. A., Andreu, T. (2019). Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts. Journal of CO2 Utilization, 30, 11–17. DOI: 10.1016/j.jcou.2019.01.003
  9. Le, M.C., Van, K.L., Nguyen, T.H.T., Nguyen, N.H. (2017). The Impact of Ce-Zr Addition on Nickel Dispersion and Catalytic Behavior for CO2 Methanation of Ni/AC Catalyst at Low Temperature. Journal of Chemistry, 2017, 4361056. DOI: 10.1155/2017/4361056
  10. Daroughegi, R., Meshkani, F., Rezaei, M. (2021). Enhanced low-temperature activity of CO2 methanation over ceria-promoted Ni-Al2O3 nanocatalyst. Chemical Engineering Science, 230, 116194. DOI: 10.1016/j.ces.2020.116194
  11. Bansode, A., Tidona, B., von Rohr, P.R., Urakawa, A. (2013). Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure. Catalysis Science & Technology, 3(3), 767–778. DOI: 10.1039/C2CY20604H
  12. Takano, H., Shinomiya, H., Izumiya, K., Kumagai, N., Habazaki, H., Hashimoto, K. (2015). CO2 methanation of Ni catalysts supported on tetragonal ZrO2 doped with Ca2+ and Ni2+ ions. International Journal of Hydrogen Energy, 40(26), 8347–8355. DOI: 10.1016/j.ijhydene.2015.04.128
  13. Dreyer, J.A.H., Li, P., Zhang, L., Beh, G.K., Zhang, R., Sit, P.H.L., Teoh, W.Y. (2017). Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Applied Catalysis B: Environmental, 219, 715–726. DOI: 10.1016/j.apcatb.2017.08.011
  14. Atzori, L., Cutrufello, M.G., Meloni, D., Monaci, R., Cannas, C., Gazzoli, D., Sini, M.F., Deiana, P., Rombi, E. (2017). CO2 methanation on hard-templated NiOCeO2 mixed oxides. International Journal of Hydrogen Energy, 42(32), 20689–20702. DOI: 10.1016/j.ijhydene.2017.06.198
  15. Fukuhara, C., Hayakawa, K., Suzuki, Y., Kawasaki, W., Watanabe, R. (2017). A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources. Applied Catalysis A: General, 532, 12–18. DOI: 10.1016/j.apcata.2016.11.036
  16. Tok, A.I.Y., Du, S.W., Boey, F.Y.C., Chong, W.K. (2007). Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Materials Science and Engineering: A, 466(1), 223–229. DOI: 10.1016/j.msea.2007.02.083
  17. Taherian, Z., Yousefpour, M., Tajally, M., Khoshandam, B. (2017). A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. International Journal of Hydrogen Energy, 42(26), 16408–16420. DOI: 10.1016/j.ijhydene.2017.05.095
  18. Ilsemann, J., Sonström, A., Gesing, T.M., Anwander, R., Bäumer, M. (2019). Highly Active Sm2O3-Ni Xerogel Catalysts for CO2 Methanation. ChemCatChem, 11(6), 1732–1741. DOI: 10.1002/cctc.201802049
  19. Brix, F., Desbuis, V., Piccolo, L., Gaudry, É. (2020). Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO2 Hydrogenation to Methanol. The Journal of Physical Chemistry Letters, 11(18), 7672–7678. DOI: 10.1021/acs.jpclett.0c02011
  20. Ojelade, O.A., Zaman, S.F., Daous, M.A., Al-Zahrani, A.A., Malik, A.S., Driss, H., Shterk, G., Gascon, J. (2019). Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol. Applied Catalysis A: General, 584, 117185. DOI: 10.1016/j.apcata.2019.117185
  21. Bahruji, H., Armstrong, R.D., Ruiz Esquius, J., Jones, W., Bowker, M., Hutchings, G.J. (2018). Hydrogenation of CO2 to dimethyl ether over Brønsted acidic PdZn catalysts. Industrial & Engineering Chemistry Research, 57(20), 6821–6829. DOI: 10.1021/acs.iecr.8b00230
  22. Bahruji, H., Bowker, M., Jones, W., Hayward, J., Ruiz Esquius, J., Morgan, D.J., Hutchings, G.J. (2017). PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions, 197(0), 309–324. DOI: 10.1039/C6FD00189K
  23. Bahruji, H., Esquius, J.R., Bowker, M., Hutchings, G., Armstrong, R.D., Jones, W. (2018). Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol. Topics in Catalysis, 61(3-4), 144–153. DOI: 10.1007/s11244-018-0885-6
  24. Rui, N., Zhang, X., Zhang, F., Liu, Z., Cao, X., Xie, Z., Zou, R., Senanayake, S.D., Yang, Y., Rodriguez, J.A., Liu, C. (2021). Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Applied Catalysis B: Environmental, 282, 119581. DOI: 10.1016/j.apcatb.2020.119581
  25. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051–1069. DOI: 10.1515/pac-2014-1117
  26. Alothman, Z.A. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874–2902. DOI: 10.3390/ma5122874
  27. Dias, Y.R., Perez-Lopez, O.W. (2020). Carbon dioxide methanation over Ni-Cu/SiO2 catalysts. Energy Conversion and Management, 203, 12214. DOI: 10.1016/j.enconman.2019.112214
  28. Lv, C., Xu, L., Chen, M., Cui, Y., Wen, X., Wu, C., Yang, B., Wang, F., Miao, Z,. Hu, X., Shou, Q. (2020). Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation. Fuel, 278, 118333. DOI: 10.1016/j.fuel.2020.118333
  29. Qi, J., Hu, X. (2020). The loss of ZnO as the support for metal catalysts by H2 reduction. Physical Chemistry Chemical Physics, 22(7), 3953–3958. DOI: 10.1039/c9cp06093f
  30. Lee, J., Ryou, Y., Chan, X., Kim, T.J., Kim, D.H. (2016). How Pt Interacts with CeO2 under the Reducing and Oxidizing Environments at Elevated Temperature: The Origin of Improved Thermal Stability of Pt/CeO2 Compared to CeO2. The Journal of Physical Chemistry C, 120(45), 25870–25879. DOI: 10.1021/acs.jpcc.6b08656
  31. Kang, J.-G., Min, B.-K., Sohn, Y. (2015). Synthesis and characterization of Sm(OH)3 and Sm2O3 nanoroll sticks. Journal of Materials Science, 50(4), 1958–1964. DOI: 10.1007/s10853-014-8760-8
  32. Zhou, G., Liu, H., Cui, K., Jia, A., Hu, G., Jiao, Z., Liu, Y., Zhang, X. (2016). Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Applied Surface Science, 383, 248–252. DOI: 10.1016/j.apsusc.2016.04.180
  33. Samanta, A., Das, S., Jana, S. (2020). Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis. Nanoscale Advances, 2(1), 417–424. DOI: 10.1039/C9NA00611G
  34. Zhang, XD., Liu, K., Fu, JW., Li, HM., Pan, H., Hu, JH., Liu, M. (2021). Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. Frontiers of Physics, 16, 63500. DOI: 10.1007/s11467-021-1079-4
  35. Goyal, R., Lee, W.J., Sameer, S., Sarkar, B., Chiang, K., Bordoloi, A. (2020). CNx stabilized Ni-Ga nanoparticles for CO2 hydrogenation: Role of preparation methods. Catalysis Today, 343, 48–55. DOI: 10.1016/j.cattod.2019.03.031
  36. Sokolov, S., Radnik, J., Schneider, M., Rodemerck, U. (2017). Low-temperature CO2 reforming of methane over Ni supported on ZnAl mixed metal oxides. International Journal of Hydrogen Energy, 42(15), 9831–9839. DOI: 10.1016/j.ijhydene.2017.01.013
  37. Sone, B.T., Manikandan, E., Gurib-Fakim, A., Maaza, M. (2015). Sm2O3 nanoparticles green synthesis via Callistemon viminalis' extract. Journal of Alloys and Compounds, 650, 357–362. DOI: 10.1016/j.jallcom.2015.07.272
  38. Barad, C., Kimmel, G., Hayun, H., Shamir, D., Hirshberg, K., Gelbstein, Y. (2020). Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix. Materials, 13(9), 2201. DOI: 10.3390/ma13092201
  39. Zinkevich, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597–647. DOI: 10.1016/j.pmatsci.2006.09.002
  40. Sholeha, N.A., Jannah, L., Rohma, H.N., Widiastuti, N., Prasetyoko, D., Jalil, A.A., Bahruji, H. (2020). Synthesis of Zeolite NaY from Dealuminated Metakaolin as Ni Support for CO2 Hydrogenation to Methane. Clays and Clay Minerals, 68(5), 513–523. https://doi.org/10.1007/s42860-020-00089-3
  41. Tada, S., Nagase, H., Fujiwara, N., Kikuchi, R. (2021). What Are the Best Active Sites for CO2 Methanation over Ni/CeO2?. Energy & Fuels, 35(6), 5241–5251. DOI: 10.1021/acs.energyfuels.0c04238

Last update:

No citation recorded.

Last update:

No citation recorded.