skip to main content

The Surface Modification of Ag3PO4 using Tetrachloroaurate(III) and Metallic Au for Enhanced Photocatalytic Activity

1Department of Chemistry, Jenderal Soedirman University, Purwokerto, 53123, Indonesia

2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan

Received: 20 Apr 2021; Revised: 30 Jul 2021; Accepted: 30 Jul 2021; Published: 20 Dec 2021; Available online: 13 Aug 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The improvement of Ag3PO4 photocatalytic activity was successful by incorporating tetrachloroaurate(III) (AuCl4)  and metallic Au on the surface of Ag3PO4. The photocatalysts were synthesized using the coprecipitation and chemisorption method. Coprecipitation of Ag3PO4 was carried out under ethanol-water solution using the starting material of AgNO3 and Na2HPO4.12H2O. AuCl4 ion and metallic Au were incorporated on the surface of Ag3PO4 using a chemisorption method under auric acid solution. The photocatalysts were characterized using XRD, DRS, SEM, and XPS. The AuCl4 ion and metallic Au were simultaneously incorporated on the Ag3PO4 surface. The high photocatalytic activity might be caused by increasing the separation of hole and electron due to capturing photogenerated electrons by metallic Au and Au(III) as electron acceptors. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Chemisorption; Metallic Au; Photocatalyst; Silver Phosphate; Tetrachloroaurate(III)
Funding: Ministry of Research and Technology/National Research and Innovation Agency under contract 176/SP2H/AMD/LT/DRPM/2020

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Wibowo, D., Muzakkar, M.Z., Saad, S.K.M., Mustapa, F., Maulidiyah, M., Nurdin, M., Umar, A.A. (2020). Enhanced visible light-driven photocatalytic degradation supported by Au-TiO2 coral-needle nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 398, 112589. DOI: 10.1016/j.jphotochem.2020.112589
  2. Duan, Z., Huang, Y., Zhang, D., Chen, S. (2019). Electrospinning Fabricating Au/TiO2 network-like nanofibers as visible light activated photocatalyst. Scientific Reports, 9, 8008. DOI: 10.1038/s41598-019-44422-w
  3. Shoueir, K., Kandil, S., El-hosainy, H., El-Kemary, M. (2019). Tailoring the surface reactivity of plasmonic Au@TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. Journal of Cleaner Production, 230, 383–393. DOI: 10.1016/j.jclepro.2019.05.103
  4. Campagnolo, L., Lauciello, S., Athanassiou, A., Fragouli, D. (2019). Au/ZnO hybrid nanostructures on electrospun polymeric mats for improved photocatalytic degradation of organic pollutants. Water, 11(9), 1787. DOI: 10.3390/w11091787
  5. Kavitha, R., Kumar, S.G. (2019). A review on plasmonic Au-ZnO heterojunction photocatalysts: Preparation, modifications and related charge carrier dynamics. Materials Science in Semiconductor Processing, 93, 59–91. DOI: 10.1016/j.mssp.2018.12.026
  6. He, C., Li, X., Li, Y., Li, J., Xi, G. (2017). Large-scale synthesis of Au–WO3 porous hollow spheres and their photocatalytic properties. Catalysis Science & Technology, 7, 3702–3706. DOI: 10.1039/C7CY01399J
  7. Xian, T., Di, L., Sun, X., Ma, J., Zhou, Y., Wei, X. (2018). Photocatalytic degradation of dyes over Au decorated SrTiO3 nanoparticles under simulated sunlight and visible light irradiation. Journal of the Ceramic Society, 126(5), 354–359. DOI: 10.2109/jcersj2.17244
  8. Nguyen, C.C., Sakar, M., Vu, M.H., Do, T.O. (2019). Nitrogen vacancies-assisted enhanced plasmonic photoactivities of Au/g-C3N4 crumpled nanolayers: A novel pathway toward efficient solar light-driven photocatalysts. Industrial & Engineering Chemistry Research, 58(9), 3698–3706. DOI: 10.1021/acs.iecr.8b05792
  9. Wang, L., Chong, J., Fu, Y., Li, R., Liu, J., Huang, M. (2020). A novel strategy for the design of Au@CdS yolk-shell nanostructures and their photocatalytic properties. Journal of Alloys and Compounds, 834, 155051. DOI: 10.1016/j.jallcom.2020.155051
  10. Li, X. Z., Li, F.B. (2001). Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology, 35(11), 2381–2387. DOI: 10.1021/es001752w
  11. Ye, Y., Wang, K., Huang, X., Lei, R., Zhao, Y., Liu, P. (2019). Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation. Catalysis Science & Technology, 9, 3771–3778. DOI: 10.1039/C9CY00920E
  12. Khan, M.R., Chuan, T.W., Yousuf, A., Chowdhurya, M.N.K., Cheng, C.K. (2015). Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity. Catalysis Science and Technology, 5, 2522–2531. DOI: 10.1039/C4CY01545B
  13. Jia, Y., Ma, H., Liu, C. (2019). Au nanoparticles enhanced Z-scheme Au-CoFe2O4/MoS2 visible light photocatalyst with magnetic retrievability. Applied Surface Science, 463, 854–862. DOI: 10.1016/j.apsusc.2018.09.008
  14. Zhang, G., Zhu, X., Chen, D., Li, N., Xu, Q., Li, H., He, J., Xu, H., Lu, J. (2020). Hierarchical Z-scheme g-C3N4/Au/ZnIn2S4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environmental Science: Nano, 7, 676–687. DOI: 10.1039/C9EN01325C
  15. Shin, J., Heo, J.N., Do, J.Y., Kim, Y.I., Yoon, S.J., Kim, Y.S., Kang, M. (2020). Effective charge separation in rGO/NiWO4@Au photocatalyst for efficient CO2 reduction under visible light. Journal of Industrial and Engineering Chemistry, 81, 427–439. DOI: 10.1016/j.jiec.2019.09.033
  16. Hu, G., Hu, C.X., Zhu, Z.Y., Zhang, L., Wang, Q., Zhang, H.L. (2018). Construction of Au/CuO/Co3O4 tricomponent heterojunction nanotubes for enhanced photocatalytic oxygen evolution under visible light irradiation. ACS Sustainable Chemistry & Engineering, 6(7), 8801–8808. DOI: 10.1021/acssuschemeng.8b01153
  17. Zhang, W., Li, G., Liu, H., Chen, J., Ma, S., An, T. (2019). Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism. Environmental Science: Nano, 6, 948–958 (2019). DOI: 10.1039/C8EN01375F
  18. Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., Yang, H., Cao, J., Luo, W., Li, Z., Liu, Y., Withers, R.L. (2010). An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials, 9, 559–564. DOI: 10.1038/nmat2780
  19. Yan, T., Zhang, H., Liu, Y., Guan, W., Long, J., Li, W., You, J. (2014). Fabrication of robust M/Ag3PO4 (M = Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis. RSC Advances, 4, 37220–37230. DOI: 10.1039/C4RA06254J
  20. Wang, F.R., Wang, J.D., Sun, H.P., Liu, J.K., Yang, X.H. (2017). Plasmon-enhanced instantaneous photocatalytic activity of Au@Ag3PO4 heterostructure targeted at emergency treatment of environmental pollution. Journal of Materials Science, 52, 2495–2510. DOI: 10.1007/s10853-016-0544-x
  21. Liu, C.F., Perng, T.P. (2020). Fabrication and band structure of Ag3PO4–TiO2 heterojunction with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 45(1), 149–159. DOI: 10.1016/j.ijhydene.2019.10.182
  22. Sulaeman, U., Hermawan, D., Andreas, R., Abdullah, A.Z., Yin, S. (2018). Native defects in silver orthophosphate and their effects on photocatalytic activity under visible light irradiation. Applied Surface Science, 428, 1029–1035. DOI: 10.1016/j.apsusc.2017.09.188
  23. Sulaeman, U., Permadi, R.D., Ningsih, D.R., Diastuti, H., Riapanitra, A., Yin, S. (2020). The surface modification of Ag3PO4 using anionic platinum complexes for enhanced visible-light photocatalytic activity. Materials Letters, 259, 126848. DOI: 10.1016/j.matlet.2019.126848
  24. Qin, Y., Li, F., Tu, P., Ma, Y., Chen, W., Shi, F., Xiang, Q., Shan, H., Zhang, L., Tao, P., Song, C., Shang, W., Deng, T., Zhu, H., Wu, J. (2018). Ag3PO4 electrocatalyst for oxygen reduction reaction: enhancement from positive charge. RSC Advances, 8, 5382–5387. DOI: 10.1039/C7RA12643C
  25. Tanaka, A., Ogino, A., Iwaki, M., Hashimoto, K., Ohnuma, A., Amano, F., Ohtani, B., Kominami, H. 2012. Gold–titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir, 28(36), 13105–13111. DOI: 10.1021/la301944b
  26. Mishra, M., Kuppusami, P., Sairam, T.N., Singh, A., Mohandas, E. (2011). Effect of substrate temperature and oxygen partial pressure on microstructure and optical properties of pulsed laser deposited yttrium oxide thin films. Applied Surface Science, 257, 7665–7670. DOI: 10.1016/j.apsusc.2011.03.156
  27. Liu, Z., Liu, Y., Xu, P., Ma, Z., Wang, J., Yuan, H. (2017). Rational Design of Wide Spectral-Responsive Heterostructures of Au Nanorod Coupled Ag3PO4 with Enhanced Photocatalytic Performance. ACS Applied Materials & Interfaces, 9(24), 20620–20629. DOI: 10.1021/acsami.7b06824
  28. Xie, Q., Li, Y., Lv, Z., Zhou, H., Yang, X., Chen, J., Guo, H. (2017). Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101, Scientific Reports, 7, 3316. DOI: 10.1038/s41598-017-03526-x
  29. Chong, R., Cheng, X., Wang, B., Li, D., Chang, Z., Zhang, L. (2016). Enhanced photocatalytic activity of Ag3PO4 for oxygen evolution and Methylene blue degeneration: Effect of calcination temperature. International Journal of Hydrogen Energy, 41, 2575−2582. DOI: 10.1016/j.ijhydene.2015.12.061
  30. Sylvestre, J.-P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T. (2004). Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. Journal of Physical Chemistry B, 108 (43), 16864−16869. DOI: 10.1021/jp047134+
  31. Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J., Wang, Z. (2017). Synthesis of n-type TaON microspheres decorated by p-type Ag2O with enhanced visible light photocatalytic activity. Molecular Catalysis, 435, 135–143. DOI: 10.1016/j.mcat.2017.03.027
  32. Zhu, M., Lu, J., Hu, Y., Liu, Y., Hu, S., Zhu, C. (2020). Photochemical reactions between 1,4-benzoquinone and O2•−. Environmental Science and Pollution Research, 27, 31289–31299. DOI: 10.1007/s11356-020-09422-8
  33. Forouzan, F., Thomas C. Richards, T.C., Bard, A.J. (1996). Photoinduced reaction at TiO2 particles. Photodeposition from NiII solutions with oxalate, Journal of Physical Chemistry, 100, 18123–18127. DOI: 10.1021/jp953241f
  34. Flyunt, R., Knolle, W., Kahnt, A., Halbig, C. E., Lotnyk, A., Häupl, T., Prager, A., Eigler, S., Abel, B. (2016). High quality reduced graphene oxide flakes by fast kinetically controlled and clean indirect UV-induced radical reduction. Nanoscale, 8, 7572–7579. DOI: 10.1039/C6NR00156D
  35. Zhao, W., Chen, C., Ma, W., Zhao, J., Wang, D., Hidaka, H., Serpone, N. (2003). Efficient Photoinduced Conversion of an Azo Dye on Hexachloroplatinate(III)-Modified TiO2 Surfaces under Visible Light Irradiation–A Photosensitization Pathway. Chemistry–A European Journal, 9, 3292‒3299. DOI: 10.1002/chem.200204559
  36. Kavinkumar, V., Jaihindh, D.P., Verma, A., Jothivenkatachalam, K., Fu, Y. (2019). Influence of cobalt substitution on the crystal structure, band edges and photocatalytic property of hierarchical Bi2WO6 microsphere. New Journal of Chemistry, 43, 9170–9182. DOI: 10.1039/C9NJ00170K

Last update:

No citation recorded.

Last update:

No citation recorded.