skip to main content

Preparation of NiFe2O4 Nanoparticles by Solution Combustion Method as Photocatalyst of Congo red

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Indonesia

2Research Centre of Advanced Material and Nanocomposite, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Indonesia

3Magister Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Padang Selasa, Palembang, Indonesia

Received: 18 Apr 2021; Revised: 21 May 2021; Accepted: 22 May 2021; Published: 30 Sep 2021; Available online: 28 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

NiFe2O4 nanoparticles had been successfully synthesized by solution combustion method using urea fuel (organic precursor). The synthesized NiFe2O4 were characterized by X-ray diffraction (XRD), Scanning electron microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Transmission Electron Microscopy (TEM), Fourier Transform Infra-Red (FTIR), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). NiFe2O4 nanoparticles irradiated with visible light were employed to degrade Congo red dye with the following variable: solution pH (3–8), H2O2 concentration (0.5–3 mM), and Congo red concentration (100–600 mg/L). XRD analysis results showed that the NiFe2O4 nanoparticles had a cubic spinel structure. The particle sizes are in the range of 10–40 nm. The magnetic properties of NiFe2O4 nanoparticles determined using VSM showed a magnetization saturation value of 47.32 emu/g. UV-Vis DRS analysis indicated that NiFe2O4 nanoparticles had an optical band gap of 1.97 eV. The success of synthesis was also proven by the EDS analysis results, which showed that the synthesized NiFe2O4 nanoparticles composed of Ni, Fe, and O elements. The removal efficiency of Congo red dye was 96.80% at the following optimum conditions: solution pH of 5.0, H2O2 concentration of 2 mM, Congo red dye concentration of 100 mg/L, and contact time of 60 min. The study of the photodegradation kinetics follows a pseudo-first order reaction with a rate constant value of 0.0853 min1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: NiFe2O4 nanoparticles; photocatalytic degradation; Congo red dye
Funding: Sriwijaya University under contract 0174.05/UN9/ SB3.LPPM.PT/2020.

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Farias, R.S., Buargue, H.L.B., Cruz, M.B., Cardoso, L.M.F., Gondim, T.A., Paulo, V.R. (2018). Adsorption of Congo Red Dye from Aqueous Solution onto Amino-Funtionalized Silica Gel. Engenharia Sanitaria e Ambiental, 23, 1053–2060. DOI: 10.1590/S1413-41522018172982
  2. Guo, X., Wang, K., Qin J. (2017). Heterogeneous Photo-Fenton Processes Using Graphite Carbon Coating Hollow CuFe2O4 Spheres for the Degradation of Methylene Blue. Applied Surface Science, 420, 792–801. DOI: 10.1016/j.apsusc.2017.05.178
  3. Zu, Y., Zhao, Y., Xu., K., Tong, Y., Zhao, F. (2016). Preparation and Comparison of Catalytic Performance for Nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites. Ceramics Internasional, 42, 18844–18850. DOI: 10.1016/j.ceramint.2016.09.030
  4. Rashad, M.M. (2007). Magnetic Properties of Nanocrystalline Magnesium Ferrite by Coprecipitation assisted with Ultrasound Irradiation. Journal of Material Science, 42, 5248–5255. DOI 10.1007/s10853-006-0389-9
  5. Khan, A., Valicsek, Z., Horvath, O. (2020). Synthesis, Characterization and Application of Iron (II) Doped Copper Ferrites (CuII(x)FeII(1-x)FeIII2O4) as Novel Heterogeneous Photo-Fenton Catalysts. Nanomaterials, 10, 921–938. Doi: 10.3390/nano10050921
  6. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Kaviyarasu, K. (2019). Catalytic Studies of NiFe2O4 Nanoparticles Prepared by Conventional and Microwave Combustion Method. Materials Chemistry and Physics, 221, 11–28. DOI: 10.1016/j.matchemphys.2018.09.012
  7. Nguyen, L.T.T., Nguyen, L.T.H., Manh. N.C., Quoc, D.N., Quang, H.N., Nguyen, H.T.T., Nguyen, D.C., Bach, L.G. (2019). A Facile Synthesis, Characterization, and Photocatalytic Activity of Magnesium Ferrite Nanoparticles via The Solution Combustion Method. Journal of Chemistry, 2019, 1–9. DOI: 10.1155/2019/3428681
  8. Talebi, R. (2017). Preparation of Nickel Ferrite Nanoparticles via A New Route and Study of Their Photocatalytic Properties. Journal of Materials Science, 28, 4058–4063. DOI: 10.1007/s10854-016-6020-1
  9. Hirthna, H., Sendhilnathan, S., Rajan, P.I., Adinaveen, T. (2018). Synthesis and Characterization of NiFe2O4 Nanoparticles for the Enhancement of Direct Sunlight Photocatalytic Degradation of Methyl Orange. Journal of Superconductivity and Novel Magnetism, 31, 1–9. DOI: 10.1007/s10948-018-4601-3
  10. Wang, Y., Zhao, H., Li, M., Fab, J., Zhao, G. (2014). Magnetic Ordered Mesoporous Copper Ferrite as a Heterogeneous Fenton Catalyst for the Degradations of Imidacloprid. Applied Catalysis B Environmental, 147, 534–545. DOI: 10.1016/j.apcatb.2013.09.017
  11. Zhang, X., Geng, Z., Jian, J., He, Y., Lv, Z., Liu, X., Yuan, H. (2020). Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation. Catalysis, 10, 1–9. DOI: 10.3390/catal10030293
  12. Desai, H.B., Hathiya, L.J., Joshi, H.H., Tanna, A.R. (2020). Synthesis and Characterization of Photocatalytic MnFe2O4 Nanoparticles. Materials Today, 21, 1905–1010. DOI: 10.1016/j.matpr.2020.01.248
  13. Sonu, Dutta, V., Sharma, S, Raizada, P., Bandegharaei, A.H., Gupta, V.K., Singh, P. (2019). Review on Augmentation in Photocatalytic Activity of CoFe2O4 via Heterojunction Formation for Photocatalysis of Organic Pollutants in Water. Journal of Saudi Chemical Society, 23, 1119–1136. DOI: 10.1016/j.jscs.2019.07.003
  14. Kuriechen, S.K., Murugesan, S., Raj, S.P. (2013). Mineralization of Azo Dye Using Combined Photo-Fenton and Photocatalytic Processes under Visible Light. Journal of Catalysis, 2013, 1–6. DOI: 10.1155/2013/104019
  15. Yan, P., Gao, L., Li, W. (2014). Microwave-enhanced Fenton-like System, Fe3O4/H2O2 for Rhodamine B Wastewater Degradation. Applied Mechanics and Materials, 448, 834–837. DOI: 10.4028/
  16. Moosavi, S., Li, R.Y.M., Lai, C.W., Yusof, Y., Gan, S., Akbarzadeh, O., Chowhury, Z.Z., Yue, X.G., Johan, M.R. (2020). Synthesized Fe3O4/AC/TiO2 Nano-Catalyst: Degradation and Reusability Studies. Nanomaterials, 10, 1–15. DOI: 10.3390/nano10122360
  17. Lazarova, T., Georgieva, M., Tzankov, D., Voykova, D., Aleksandrov, L., Zheleva, Z.C., Kovacheva, D. (2017). Influence of Type of Fuel for the Solution Combustion Synthesis on the Structure, Morphology and Magnetic Properties of Nanosized NiFe2O4. Journal of Alloys and Compounds, 700, 272–283. DOI: 10.1016/j.jallcom.2017.01.055
  18. Egizbek, K., Kozlovskiy, A.L., Ludzik, K., Zdorovets, M.V., Korolkov, L.V., Marciniak, B., Jazdzewska, M., Chudoba, D., Nazarova, A., Kontek, R. (2020). Stability and Cytotoxicity Study of NiFe2O4 Nanocomposites Synthesized by Coprecipitation and Subsequent Thermal Annealing. Ceramics Internasional, 46, 16548–16555. DOI: 10.1016/j.ceramint.2020.03.222
  19. Karakas, Z.K., Boncukcuoglu, R., Karakas, I.H., (2016). The effects of Fuel in Synthesis of NiFe2O4 Nanoparticles by Microwave Assisted Combustion Method. In Proceedings of the Internasional Physics Conference at the Anatolian Peak. Journal of Physics: Conferences Series, 707, 1–11. DOI: 10.1088/1742-6596/707/1/012046
  20. Sagadevan, S., Chawdhury, Z.Z., Rafique, R.E. (2016). Preparation and Characterization of Nickel Ferrite Nanoparticles via Coprecipitation Method. Material Research, 21, 1–5. DOI: 10.1590/1980-5373-mr-2016-0533
  21. Lin, C.C., Ho, J.M. (2014). Structural analysis and Catalytic Activity of Fe3O4 Nanoparticles Prepared by a Facile Coprecipitation Method in a Rotating Packed Bed. Ceramics Internasional, 40, 10275–10282. DOI: 10.1016/j.ceramint.2014.02.119
  22. Balaji, S., Selvan, R.K., Berchmans, L.J., Angappan, S., Subramanian, K., Augustin, C.O. (2005). Combustion Synthesis and Characterization of Sn4+ Substituted Nanocrystalline NiFe2O4. Materials Science and Engineering B, 119, 119–124. DOI: 10.1016/j.mseb.2005.01.021
  23. Zhang, D., Tong, Z., Xu, G., Li, S., Ma, J. (2009). Template Fabrication of NiFe2O4 Nanorods: Characterization, Magnetic, and Electrochemical Properties. Solid State Sciences, 11, 113–117. DOI: 10.1016/j.solidstatesciences.2008.05.001
  24. Das, H., Inukai, A., Debnath, N., Kawaguchi, T., Sakamoto, N., Hoque, S.M., Aono, H., Shinazaki, K., Suzuki, H., Wakiya, N. (2018). Influence of Crystallite on the Magnetic and heat Generation Properties of La0.77Sr0.23MnO3 Nanoparticles for Hyperthermia Applications. Journal of Physics and Chemistry of Solids, 112, 179–184. DOI: 10.1016/j.jpcs.2017.09.030
  25. Tan, J., Zhang, W., Xia, A. (2013). Facile Synthesis of Inverse Spinel NiFe2O4 Nanocrystals and Their Superparamagnetic Properties. Materials Research, 16, 237–241. DOI: 10.1590/S1516-143920120050000157
  26. El Desouky, F.G., Saadeldin, M.M., Mahdy, M.A., El Zawawi, I.K. (2021). Tuning the Structure, Morphological Variations, Optical and Magnetic Properties of SnO2/NiFe2O4 Nanocomposites for Promising Applications. Vacuum, 185, 1–12. DOI: 10.1016/j.vacuum.2020.110003
  27. Xu, S., Shangguan, W., Yuan, J., Chen, M., Shi, J. (2007). Preparation and Photocatalytic Properties of Magnetically Separable Nitrogen-Doped TiO2 Supported on Nickel Ferrite. Applied Catalysis B. Environmental, 71, 177–184. DOI: 10.1016/j.apcatb.2006.09.004
  28. Rahmayeni, Zulhadjri, Jamarun, N., Emriadi, Arief, S. (2016). Synthesis of ZnO-NiFe2O4 Magnetic Nanocomposites by Simple Solvothermal Method for Photocatalytic Dye Degradation under Solar Light. Oriental Journal of Chemistry, 32, 1411–1419. DOI: 10.13005/ojc/320315
  29. Quinonez, J.L.O., Pal, U., Villanueva, M.S. (2018). Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co-Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega, 3, 14986–15001. DOI: 10.1021/acsomega.8b02229
  30. Casbeer, E., Sharma, V.K., Li, X.Z. (2012). Synthesis and Photocatalytic Activity of Ferrites under Visible Light: A review. Separation and Purification Technology, 87, 1–14. DOI: 10.1016/j.seppur.2011.11.034
  31. Moeinpour, F., Kamyab, S., Akhgar, M.R. (2017). NiFe2O4 Magnetic Nanoparticles as an Adsorbent for Cadmium Removal from Aqueous Solution. Journal of Water Chemistry and Technology, 39, 281–288. DOI: 10.3103/S1063455X17050058
  32. Vijay, S., Balakrishnan, R.M., Rene, E.R., Priyanka, U. (2019). Photocatalytic Degradation of Irgalite Violet Dye using Nickel Ferrite Nanoparticles. Journal of Water Supply: Research and Technology-Aqua, 68, 666–674. DOI: 10.2166/aqua.2019.039
  33. Zhou, L., Lei, J., Wang, L., Liu, Y., Zhang, J. (2017). Highly Efficient Photo-Fenton Degradation of Methyl Orange Facilitated by Slow Light Effect and Hierarchical Porous Structure of Fe2O3-SiO2 Photonic Crystal. Applied Catalysis B Environmental, 237, 1160–1167. DOI: 10.1016/j.apcatb.2017.08.039
  34. Rezai, P., Baniyaghoob, S., Sadr, M.H. (2019). Fe3O4@SiO2@AgO Nanocomposite: Synthesis, Characterization, and Investigation of its Photocatalytic Application, Journal of Electronic Materials, 48, 3285–3296. DOI: 10.1007/s11664-019-07091-z
  35. Flores, A., Nesprias, K., Vitale, P., Tasca, J., Lavat, A., Eyler, N., Canizo, A. (2014). Heterogeneous Photocatalytic Discoloration/Degradation of Rhodamine B with H2O2 and Spinel Copper Ferrite Magnetic Nanoparticles. Australian Journal of Chemistry, 67, 609–614. DOI: 10.1071/CH13435
  36. Ameta, N., Sharma, J., Chanderia, K. (2012). Degradation of Crystal Violet using Copper Modified Iron Oxide as Heterogeneous Photo-Fenton Reagent. Journal of Iranian Chemical Research, 5, 241–253
  37. Sakwises, L., Pisitsak, P., Manuspiya, H., Ummartyotin, S. (2017). Effect of Mn-substituted SnO2 Particle Toward Photocatalytic Degradation of Methylene Blue Dye. Results in Physics, 7, 1751–1759. DOI: 10.1016/j.rinp.2017.05.009
  38. Patil, S.S., Tamboli, M.S., Deonikar, V.G., Umarji, G.G., Ambekar, J.D., Kulkami, M.V., Kolekar, S.S., Kale, B.B., Patil, D.R. (2015). Magnetically Separable Ag3PO4/NiFe2O4 Composites with Enhanced Photocatalytic Activity, Dalton Transactions, 44, 20426–20434. DOI: 10.1039/c5dt03173g
  39. Kahhki, R.M., Khorrampoor, A., Rabbani, M., Ahsani, F. (2017). Visible Light Photocatalytic Degradation of Textile Waste Water by Co Doped NiFe2O4 Nanocomposite. Journal of Materials Science: Materials in Electronics, 28, 4095–4101. DOI: 10.1007/s10854-016-6028-6
  40. Tsvetkov, M.P., Ivanova, I.R., Valcheva, E.P., Zaharieva, J.Ts., Milanova, M.M. (2019). Photocatalytic Activity of NiFe2O4 and Zn0.5Ni0.5Fe2O4 Modified by Eu(III) and Tb(III) for Decomposition of Malachite Green. Open Chemistry, 17, 1124–1132. DOI: 10.1515/chem-2019-0116
  41. Wong, Y., Wang, H., Yang, Y., Xin, B. (2021). Magnetic NiFe2O4 3D Nanosphere Photocatalyst: Glycerol-Assisted Microwave Solvothermal Synthesis and Photocatalytic Activity under Microwave Electrodeless Discharge Lamp. Ceramics International, 47, 14594–14602. DOI: 10.1016/j.ceramint.2021.02.041

Last update:

No citation recorded.

Last update:

No citation recorded.