skip to main content

Utilization of Modified Zeolite as Catalyst for Steam Gasification of Palm Kernel Shell

1Department of Chemical Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

2Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia

3Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China

Received: 16 Apr 2021; Revised: 14 Jun 2021; Accepted: 14 Jun 2021; Published: 30 Sep 2021; Available online: 23 Jun 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Syngas from biomass gasification is being developed for alternative feedstock in the chemical industry. Palm kernel shell which is generated from palm oil industry can be potentially used as raw material for gasification process. The purpose of this study was to investigate the use of modified natural zeolite catalysts in steam gasification of palm kernel shells. Mordenite type zeolite was modified by acid leaching to be used as a tar cracking catalyst. Steam gasification was conducted at the temperature range of 750–850 °C and the steam to biomass ratio was in the range of 0–2.25. The result showed that steam gasification of palm kernel shell with the addition of zeolite catalyst at 750 °C and steam to biomass ratio 2.25 could reduce tar content up to 98% or became 0.7 g/Nm3. In this study, gasification of palm kernel shells produced syngas with the hydrogen concentration in the range of 52–64% and H2/CO ratio of 2.7–5.7. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Gasification; Tar Removal; Clean Syngas; Mordenite; Palm Kernel Shells
Funding: Universitas Sebelas Maret

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Venvik, H.J., Yang, J. (2017). Catalysis in microstructured reactors: Short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catalysis Today, 285, 135-146. DOI: 10.1016/j.cattod.2017.02.014
  2. Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S. (2015). A review on biomass gasification syngas cleanup. Applied Energy, 155, 294-307. DOI: 10.1016/j.apenergy.2015.05.095
  3. Anis, S., Zainal, Z.A. (2011). Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renewable and Sustainable Energy Reviews, 15(5), 2355-2377. DOI: 10.1016/j.rser.2011.02.018
  4. Waluyo, J., Makertihartha, I., Susanto, H. (2018). Pyrolysis with intermediate heating rate of palm kernel shells: Effect temperature and catalyst on product distribution. AIP Conference Proceedings, 1977(1), 020026. DOI: 10.1063/1.5042882
  5. Saleem, F., Harris, J., Zhang, K., Harvey, A. (2020). Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification – A critical review. Chemical Engineering Journal, 382, 122761. DOI: 10.1016/j.cej.2019.122761
  6. Kuba, M., Kraft, S., Kirnbauer, F., Maierhans, F., Hofbauer, H. (2018). Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass. Applied Energy, 210, 230-240. DOI: 10.1016/j.apenergy.2017.11.028
  7. Chen, Z., Li, Y., Lai, D., Geng, S., Zhou, Q., Gao, S., Xu, G. (2018). Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas. Applied Energy, 215, 348-355. DOI: 10.1016/j.apenergy.2018.02.023
  8. Ruiz, J.A., Juárez, M.C., Morales, M.P., Muñoz, P., Mendívil, M.A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18, 174-183. DOI: 10.1016/j.rser.2012.10.021
  9. Roche, E., de Andrés, J.M., Narros, A., Rodríguez, M.E. (2014). Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition. Fuel, 115, 54-61. DOI: 10.1016/j.fuel.2013.07.003
  10. Cho, M.-H., Mun, T.-Y., Choi, Y.-K., Kim, J.-S. (2014). Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal. Energy, 70, 128-134. DOI: 10.1016/j.energy.2014.03.097
  11. Kuhn, J.N., Zhao, Z., Felix, L.G., Slimane, R.B., Choi, C.W., Ozkan, U.S. (2008). Olivine catalysts for methane- and tar-steam reforming. Applied Catalysis B: Environmental, 81(1–2), 14-26. DOI: 10.1016/j.apcatb.2007.11.040
  12. Fredrik, L., Nicolas, B., Martin, S., Henrik, T. (2013). Ilmenite and Nickel as catalysts for upgrading of raw gas derived from biomass gasification. Energy Fuels, 27 (2), 997–1007. DOI: 10.1021/ef302091w
  13. Liu, H., Chen, T., Chang, D., Chen, D., He, H., Frost, R.L. (2012). Catalytic cracking of tar derived from rice hull gasification over palygorskite-supported Fe and Ni. Journal of Molecular Catalysis A: Chemical, 363–364, 304-310. DOI: 10.1016/j.molcata.2012.07.005
  14. Oemar, U., Ang, P.S., Hidajat, K., Kawi, S. (2013). Promotional effect of Fe on perovskite LaNixFe1−xO3 catalyst for hydrogen production via steam reforming of toluene. International Journal of Hydrogen Energy, 38(14), 5525-5534. DOI: 10.1016/j.ijhydene.2013.02.083
  15. Zou, X., Chen, T., Liu, H., Zhang, P., Chen, D., Zhu, C. (2016). Catalytic cracking of toluene over hematite derived from thermally treated natural limonite. Fuel, 177, 180-189. DOI: 10.1016/j.fuel.2016.02.094
  16. El-Rub, Z.A., Bramer, E.A., Brem, G. (2004). Review Of Catalysts For Tar Elimination In Biomass Gasification Process. Induatrial & Engineering Chemistry Research, 43, 6911–6919. DOI: https://doi.org/10.1021/ie0498403
  17. Wongcharee, S., Aravinthan, V., Erdei, L. (2019). Mesoporous activated carbon-zeolite composite prepared from waste macadamia nut shell and synthetic faujasite. Chinese Journal of Chemical Engineering, 27(1), 226-236. DOI: 10.1016/j.cjche.2018.06.024
  18. Nasser, G.A., Kurniawan, T., Tago, T., Bakare, I.A., Taniguchi, T., Nakasaka, Y., Masuda, T., Muraza, O. (2016). Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers, 61, 20-25. DOI: 10.1016/j.jtice.2015.11.025
  19. Dziedzicka, A., Sulikowski, B., Ruggiero-Mikołajczyk. M. (2016). Catalytic and physicochemical properties of modified natural clinoptilolite. Catalysis Today, 259, 50-58. DOI: 10.1016/j.cattod.2015.04.039
  20. Nasser, G., Kurniawan, T., Miyake, K., Galadima, A., Hirota, Y., Nishiyama, N., Muraza, O. (2016). Dimethyl ether to olefins over dealuminated mordenite (MOR) zeolites derived from natural minerals. Journal of Natural Gas Science and Engineering, 28, 566-571. DOI: 10.1016/j.jngse.2015.12.032
  21. Waluyo, J., Richards, T.. Makertihartha, I., Susanto, H. (2017). Modification of Natural Zeolite as a Catalyst for Steam Reforming of Toluene. Asean Journal of Chemical Engineering, 17(1), 37-45. DOI: 10.22146/ajche.49564
  22. Waluyo, J., Makertihartha, I.G.B.N., Susanto, H. (2018). The effect of acid leaching time in modifying natural zeolite as catalyst for toluene steam reforming. MATEC Web of Conferences, 159, 02046. DOI: 10.1051/matecconf/201815902046
  23. Chang, G., Yan, X., Qi, P., An, M., Hu, X., Guo, Q. (2018). Characteristics of reactivity and structures of palm kernel shell (PKS) biochar during CO2/H2O mixture gasification. Chinese Journal of Chemical Engineering, 26(10), 2153-2161. DOI: 10.1016/j.cjche.2018.03.003
  24. Putro, F.A., Pranolo, S.H., Waluyo, J., Setyawan, A. (2020). Thermodynamic study of palm kernel shell gasification for aggregate heating in an asphalt mixing plant. International Journal of Renewable Energy Development, 9(2), 311-317. doi: 10.14710/ijred.9.2.311-317
  25. Yusup, S., Khan, Z., Ahmad, M.M., Rashidi, N.A. (2014). Optimization of hydrogen production in in-situ catalytic adsorption (ICA) steam gasification based on Response Surface Methodology. Biomass and Bioenergy, 60, 98-107. DOI: 10.1016/j.biombioe.2013.11.007
  26. Chiodo, V., Urbani, F., Zafarana, G., Prestipino, M., Galvagno, A., Maisano, S. (2017). Syngas production by catalytic steam gasification of citrus residues. International Journal of Hydrogen Energy. 42(46), 28048-28055. DOI: 10.1016/j.ijhydene.2017.08.085
  27. Kirnbauer, F., Wilk, V., Hofbauer, H. (2013). Performance improvement of dual fluidized bed gasifiers by temperature reduction: The behavior of tar species in the product gas. Fuel, 108, 534-542. DOI: 10.1016/j.fuel.2012.11.065
  28. Zhang, B., Zhang, L., Yang, Z., Yan, Y., Pu, G., Guo, M. (2015). Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO. International Journal of Hydrogen Energy, 40(29), 8816-8823. DOI: 10.1016/j.ijhydene.2015.05.075
  29. Udomsirichakorn, J., Basu, P., Salam, P.A., Acharya, B. (2013). Effect of CaO on tar reforming to hydrogen-enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier. International Journal of Hydrogen Energy, 38(34), 14495-14504. DOI: 10.1016/j.ijhydene.2013.09.055

Last update:

No citation recorded.

Last update:

No citation recorded.