skip to main content

Catalytic Oxidation of Ponceau 4R in Aqueous Solution using Iron-impregnated Al-pillared Bentonite: Optimization of the Process

1Department of Chemical Engineering, Faculty of Engineering and Architecture, Universidad Nacional de Colombia sede Manizales, Campus La Nubia, km 7 Vía al Aeropuerto, AA 127 Manizales, Colombia

2Department of Physics and Chemical, Faculty of Exact and Natural Sciences, Universidad Nacional de Colombia sede Manizales, Campus La Nubia, km 7 Vía al Aeropuerto, AA 127 Manizales, Colombia

Received: 6 Apr 2021; Revised: 8 Jun 2021; Accepted: 9 Jun 2021; Published: 30 Sep 2021; Available online: 11 Jun 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The application of the Fenton-like process for the oxidation of an aqueous solution of Ponceau 4R dye, using an aluminum pillared clay impregnated with iron (Fe(wt%)/Al-PILC) as catalyst, was investigated. The Response Surface Methodology (RSM), based on a Central Composite Design (CCD) was used to evaluate and optimize the oxidation process of a Ponceau 4R solution. Three independent variables were studied in the experimental design: the amount of H2O2 expressed in multiples of times of stoichiometry dose, iron concentration incorporated by impregnation onto aluminum pillared clay (Fe(wt%)), and amount of catalyst (Fe(wt%)/Al-PILC). The response variables were decolorization and total organic carbon (TOC) removal. The significance of independent variables and their interactions were tested by means of analysis of variance (ANOVA), with a 95% confidence level. With low stoichiometric dose of H2O2 (0.96 and 1.54 times), medium amount of catalyst (374.4 and 391.3 mg) and high Fe concentration impregnated in pillared clay (9.3 and 7.7 wt%), the total decolorization and high TOC removal were achieved. Under multi-objective optimization conditions (3.0 times the stoichiometric dose of H2O2, 420 mg Fe(wt%)/Al-PILC and 5.5 wt% Fe impregnated in Al-PILC), it was possible to achieve 86.18% decolorization and 66.81% TOC removal after 5 h of reaction at 25 °C, with the additional advantage of showing an iron leaching of less than 0.10 mg/L. The established models' soundness is confirmed by a good fit between predictive models and experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Fenton like; Pillared Clay; Ponceau 4R; Decolorization; Experimental Design
Funding: Universidad Nacional de Colombia sede Manizales under contract DIMA-UNAL projects (Code 38621 and 46078)

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Al-Degs, Y., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N.A. (2001). Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons. Sep. Purif. Technol., 36, 91-102. DOI: 10.1081/SS-100000853
  2. Kim, S., Park, C.M., Jang, M., Son, A., Her, N., Yu, M., Snyder, S., Kim, D.-H., Yoon, Y. (2018). Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: A review. Chemosphere, 212, 1104-1124. DOI: 10.1016/j.chemosphere.2018.09.033
  3. Deng, Y., Zhao, R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep., 1, 167-176. DOI: 10.1007/s40726-015-0015-z
  4. Salazar-Arias, Á.M., Giraldo-Gómez, G.I., Sanabria-González, N.R. (2020). Degradation of phenol using mill scale as a Fenton-type catalyst. Water Environ. J., 34, 183-191. DOI: 10.1111/wej.12516
  5. Pignatello, J.J., Oliveros, E., MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol., 36, 1-84. DOI: 10.1080/10643380500326564
  6. Bonora, R., Boaretti, C., Campea, L., Roso, M., Martucci, A., Modesti, M., Lorenzetti, A. (2020). Combined AOPs for formaldehyde degradation using heterogeneous nanostructured catalysts. Nanomaterials, 10, 148. DOI: 10.3390/nano10010148
  7. Ma, J., Song, W., Chen, C., Ma, W., Zhao, J., Tang, Y. (2005). Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ. Sci. Technol., 39, 5810-5815. DOI: 10.1021/es050001x
  8. Walling, C. (1975). Fenton's reagent revisited. Acc. Chem. Res., 8, 125-131. DOI: 10.1021/ar50088a003
  9. Walling, C., Goosen, A. (1973). Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J. Am. Chem. Soc., 95, 2987-2991. DOI: 10.1021/ja00790a042
  10. Zárate-Guzmán, A.I., González-Gutiérrez, L.V., Godínez, L.A., Medel-Reyes, A., Carrasco-Marín, F., Romero-Cano, L.A. (2019). Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ H2O2 electro-generation as clean technology for wastewater treatment. Chemosphere, 224, 698-706. DOI: 10.1016/j.chemosphere.2019.02.101
  11. He, J., Yang, X., Men, B., Wang, D. (2016). Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. J. Environ. Sci., 39, 97-109. DOI: 10.1016/j.jes.2015.12.003
  12. Sreeja, P.H., Sosamony, K.J. (2016). A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment. Proc. Technol., 24, 217-223. DOI: 10.1016/j.protcy.2016.05.065
  13. Ikhlaq, A., Brown, D.R., Kasprzyk-Hordern, B. (2013). Mechanisms of catalytic ozonation: An investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water. Appl. Catal. B: Environ., 129, 437-449. DOI: 10.1016/j.apcatb.2012.09.038
  14. Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., Bée, A., Medjram, M.S., Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Appl. Catal. B: Environ., 136-137, 9-18. DOI: 10.1016/j.apcatb.2013.01.046
  15. Maurya, M.R., Titinchi, S.J.J., Chand, S. (2003). Oxidation of phenol with H2O2 catalysed by Cr(III), Fe(III) or Bi(III) N,N′-bis(salicylidene)diethylenetriamine (H2saldien) complexes encapsulated in zeolite-Y. J. Mol. Catal. A: Chem., 193, 165-176. DOI: 10.1016/S1381-1169(02)00451-X
  16. Zazo, J.A., Casas, J.A., Mohedano, A.F., Rodríguez, J.J. (2006). Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B: Environ., 65, 261-268. DOI: 10.1016/j.apcatb.2006.02.008
  17. Ramirez, J.H., Costa, C.A., Madeira, L.M., Mata, G., Vicente, M.A., Rojas-Cervantes, M.L., López-Peinado, A.J., Martín-Aranda, R.M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl. Catal. B: Environ., 71, 44-56. DOI: 10.1016/j.apcatb.2006.08.012
  18. Herney-Ramirez, J., Lampinen, M., Vicente, M.A., Costa, C.A., Madeira, L.M. (2008). Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind. Eng. Chem. Res., 47, 284-294. DOI: 10.1021/ie070990y
  19. Bertella, F., Pergher, S.B.C. (2015). Pillaring of bentonite clay with Al and Co. Micropor. Mesopor. Mater., 201, 116-123. DOI: 10.1016/j.micromeso.2014.09.013
  20. Figueras, F. (1988). Pillared clays as catalysts. Catal. Rev., 30, 457-499. DOI: 10.1080/01614948808080811
  21. Gil, A., Gandía, L.M., Vicente, M.A. (2000). Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev., 42, 145-212. DOI: doi.org/10.1081/CR-100100261
  22. Oliveira, L.C.A., Lago, R.M., Fabris, J.D., Solar, C., Sapag, K. (2003). Transition metals supported on Al-PILCs as catalysts for C6H5Cl oxidation. Braz. J. Chem. Eng., 20, 45-50. DOI: 10.1590/S0104-66322003000100009
  23. Thiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., Sirés, I. (2016). Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl. Catal. B: Environ., 180, 227-236. DOI: 10.1016/j.apcatb.2015.06.039
  24. Benincá, C., Peralta-Zamora, P., Tavares, C.R.G., Igarashi-Mafra, L. (2013). Degradation of an azo dye (Ponceau 4R) and treatment of wastewater from a food industry by ozonation. Ozone: Sci. Eng., 35, 295-301. DOI: 10.1080/01919512.2013.794691
  25. Ghoneim, M.M., El-Desoky, H.S., Zidan, N.M. (2011). Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination, 274, 22-30. DOI: 10.1016/j.desal.2011.01.062
  26. Arroyave Rojas, J.A., Rodríguez Gaviria, E.M., Barón Aristizábal, C.A., Moreno Salazar, C.C. (2012). Degradation and mineralization of the ponceau red dye by the use of the Fenton reagent. Rev. P+L., 7, 48-58
  27. Thiam, A., Sirés, I., Brillas, E. (2015). Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Res., 81, 178-187. DOI: 10.1016/j.watres.2015.05.057
  28. Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., Sanabria-González, N.R. (2020). Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Brief., 30, 105463. DOI: 10.1016/j.dib.2020.105463
  29. Rueda Márquez, J.J., Levchuk, I., Sillanpää, M. (2018). Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8, 1-18. DOI: 10.3390/catal8120673
  30. Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Sanabria-González, N.R. (2018). Characterization of Colombian clay and its potential use as adsorbent. Sci. World J., 2018, 1-11. DOI: 10.1155/2018/5969178
  31. Day, P.R. (1965). Particle fractionation and particle-size analysis. In Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clarck, F.E. (Eds.) Methods of Soil Analysis, Part 1. Physical and Mineralogical. Madison: American Society of Agronomy, Inc. Publisher
  32. Ge, Z., Li, D., Pinnavaia, T.J. (1994). Preparation of alumina-pillared montmorillonites with high thermal stability, regular microporosity and Lewis/Brönsted acidity. Microporous Mater., 3, 165-175. DOI: 10.1016/0927-6513(94)00020-4
  33. Carriazo, J.G., Guelou, E., Barrault, J., Tatibouët, J.M., Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Appl. Clay Sci., 22, 303-308. DOI: 10.1016/S0169-1317(03)00124-8
  34. Galeano, L.A., Gil, A., Vicente, M.A. (2010). Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Appl. Catal. B: Environ., 100, 271-281. DOI: 10.1016/j.apcatb.2010.08.003
  35. Cañizares, P., Valverde, J.L., Sun Kou, M.R., Molina, C.B. (1999). Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study. Micropor. Mesopo. Mater., 29, 267-281. DOI: 10.1016/S1387-1811(98)00295-9
  36. Gregg, S.J., Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity. Second ed. London: Academic Press
  37. Rouquerol, F., Rouquerol, J., Sing, K. (1999). Adsorption by Powders and Porous Solids. London: Academic Press
  38. Torres-Luna, J.A., Carriazo, J.G., Sanabria, N.R. (2016). Delaminated montmorillonite with iron(III)-TiO₂ species as a photocatalyst for removal of a textile azo-dye from aqueous solution. Environ. Technol., 37, 1346-1356. DOI: 10.1080/09593330.2015.1114031
  39. Sanabria, N.R., Centeno, M.A., Molina, R., Moreno, S. (2009). Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity. Appl. Catal. A: Gen., 356, 243-249. DOI: 10.1016/j.apcata.2009.01.013
  40. Rueda Márquez, J.J., Levchuk, I., Sillanpää, M. (2018). Application of catalytic wet peroxide oxidation for industrial and urban wastewater Treatment: A review. Catalysts, 8, 1-18. DOI: 10.3390/catal8120673
  41. Banković, P., Milutinović-Nikolić, A., Mojović, Z., Jović-Jovičić, N., Žunić, M., Dondur, V., Jovanović, D. (2012). Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Appl. Clay Sci., 58, 73-78. DOI: 10.1016/j.clay.2012.01.015
  42. Ramírez, J.H., Galeano, L.A., Pinchao, G., Bedoya, R.A., Hidalgo, A. (2018). Optimized CWPO phenol oxidation in CSTR reactor catalyzed by Al/Fe-PILC from concentrated precursors at circumneutral pH. J Environ Chem Eng, 6, 2429-2441. DOI: 10.1016/j.jece.2018.02.024
  43. Gómez-Obando, V.A., García-Mora, A.-M., Basante, J.S., Hidalgo, A., Galeano, L.-A. (2019). CWPO degradation of methyl orange at circumneutral pH: Multi-response statistical optimization, main intermediates and by-products. Front. Chem., 7, 1-15. DOI: 10.3389/fchem.2019.00772
  44. Ribeiro, R.S., Rodrigues, R.O., Silva, A.M.T., Tavares, P.B., Carvalho, A.M.C., Figueiredo, J.L., Faria, J.L., Gomes, H.T. (2017). Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste. Appl. Catal. B: Environ., 219, 645-657. DOI: 10.1016/j.apcatb.2017.08.013
  45. Ordoñez-Ordoñez, A., Revelo-Romo, D.M., Garcia-Mora, A.M., Hidalgo-Troya, A., Galeano, L.-A. (2019). MS2 coliphage inactivation by Al/Fe PILC-activated catalytic wet peroxide oxidation: multiresponse statistical optimization. Heliyon, 5, e01892. DOI: 10.1016/j.heliyon.2019.e01892
  46. Yabalak, E., Topaloğlu, İ., Gizir, A.M. (2019). Multi-response central composite design of the mineralization and removal of aniline by subcritical water oxidation method. Int. J. Ind. Chem., 10, 97-105. DOI: 10.1007/s40090-019-0175-6
  47. Izadiyan, P., Hemmateenejad, B. (2016). Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem., 190, 864-870. DOI: 10.1016/j.foodchem.2015.06.036
  48. Turhan, G.D., Kartal, O.E. (2010). Photo-Fenton treatment of C.I. reactive black 5 by use of response surface methodology. Fresenius Environ. Bull., 19, 2736-2743
  49. Mousavi, S.A., Nazari, S. (2017). Applying response surface methodology to optimize the fenton oxidation process in the removal of reactive red 2. Pol. J. Environ. Stud., 26, 765-772. DOI: 10.15244/pjoes/65365
  50. Dean, A., Voss, D., Draguljić, D. (2017). Response Surface Methodology. In Dean, A., Voss, D., Draguljić, D. (Eds.) Design and Analysis of Experiments. Cham - Switzerland: Springer International Publishing
  51. Bergaya, F., Aouad, A., Mandalia, T. (2006). Chapter 7.5 Modified Clays and Clay Minerals. In Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.) Developments in Clay Science. Oxford: Elsevier Science
  52. Ramsey, M.H., Potts, P.J., Webb, P.C., Watkins, P., Watson, J.S., Coles, B.J. (1995). An objective assessment of analytical method precision: comparison of ICP-AES and XRF for the analysis of silicate rocks. Chem. Geol., 124, 1-19. DOI: 10.1016/0009-2541(95)00020-M
  53. Tireli, A.A., do Rosário Guimarães, I., Mello Mattos de Castro, G., Gonçalves, M.A., de Castro Ramalho, T., Guerreiro, M.C. (2020). Iron and molybdenum mixed oxide supported on Al-PILC for the catalytic oxidative desulfurization of dibenzothiophene in simulated diesel fuel. Environ. Sci. Pollut. Res., 27, 14963-14976. DOI: 10.1007/s11356-020-07961-8
  54. Zhang, T., Liu, J., Wang, D., Zhao, Z., Wei, Y., Cheng, K., Jiang, G., Duan, A. (2014). Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Appl. Catal. B: Environ., 148-149, 520-531. DOI: 10.1016/j.apcatb.2013.11.006
  55. Qian, W.-y., Su, Y.-x., Yang, X., Yuan, M.-h., Deng, W.-y., Zhao, B.-t. (2017). Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays. J. Fuel Chem. Technol., 45, 1499-1507. DOI: 10.1016/S1872-5813(17)30067-1
  56. Herney-Ramirez, J., Silva, A.M.T., Vicente, M.A., Costa, C.A., Madeira, L.M. (2011). Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Appl. Catal. B: Environ., 101, 197-205. DOI: 10.1016/j.apcatb.2010.09.020
  57. Qi, G., Yang, R.T. (2005). Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts. Appl. Catal. A: Gen., 287, 25-33. DOI: 10.1016/j.apcata.2005.03.006
  58. Karimifard, S., Alavi Moghaddam, M.R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci. Total Environ., 640-641, 772-797. DOI: 10.1016/j.scitotenv.2018.05.355
  59. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Sanabria-González, N.R. (2020). Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. Sci. World J., 2020, 1-9. DOI: 10.1155/2020/3628163
  60. Özdikicierler, O., Yemişçioğlu, F., Saygın Gümüşkesen, A. (2016). Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. Eur. Food Res. Technol., 242, 805-813. DOI: 10.1007/s00217-015-2587-7
  61. Sarrai, A.E., Hanini, S., Merzouk, N.K., Tassalit, D., Szabó, T., Hernádi, K., Nagy, L. (2016). Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-Fenton reaction. Materials, 9, 428. DOI: 10.3390/ma9060428
  62. Arslan-Alaton, I., Tureli, G., Olmez-Hanci, T. (2009). Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology. J. Photochem. Photobiol. A: Chem., 202, 142-153. DOI: 10.1016/j.jphotochem.2008.11.019
  63. Zhou, X., Zhou, S., Feng, X. (2017). Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology. PLOS ONE, 12, 1-18. DOI: 10.1371/journal.pone.0171234
  64. Ardekani, P.S., Karimi, H., Ghaedi, M., Asfaram, A., Purkait, M.K. (2017). Ultrasonic assisted removal of methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: Experimental design methodology and artificial neural network. J. Mol. Liq., 229, 114-124. DOI: 10.1016/j.molliq.2016.12.028
  65. Spadaro, J.T., Isabelle, L., Renganathan, V. (1994). Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ. Sci. Technol., 28, 1389-1393. DOI: 10.1021/es00056a031
  66. Lin, S.-S., Gurol, M.D. (1998). Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol., 32, 1417-1423. DOI: 10.1021/es970648k
  67. Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., Moreno, S. (2005). Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Water Res., 39, 3891-3899. DOI: 10.1016/j.watres.2005.06.034
  68. Pérez-Moya, M., Graells, M., del Valle, L.J., Centelles, E., Mansilla, H.D. (2007). Fenton and photo-Fenton degradation of 2-chlorophenol: Multivariate analysis and toxicity monitoring. Catal. Today, 124, 163-171. DOI: 10.1016/j.cattod.2007.03.034
  69. Cao, G.-m., Sheng, M., Niu, W.-f., Fei, Y.-l., Li, D. (2009). Regeneration and reuse of iron catalyst for Fenton-like reactions. J. Hazard. Mater., 172, 1446-1449. DOI: 10.1016/j.jhazmat.2009.08.010
  70. Hou, B., Han, H., Jia, S., Zhuang, H., Xu, P., Wang, D. (2015). Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi's equation. J. Taiwan Inst. Chem. Eng., 56, 138-147. DOI: 10.1016/j.jtice.2015.04.017
  71. Rache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., Ramírez, J.H. (2014). Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi's equation. Appl. Catal. B: Environ., 146, 192-200. DOI: 10.1016/j.apcatb.2013.04.028

Last update: 2021-10-15 00:37:37

No citation recorded.

Last update: 2021-10-15 00:37:37

No citation recorded.