skip to main content

Statistical Optimisation using Taguchi Method for Transesterification of Reutealis Trisperma Oil to Biodiesel on CaO-ZnO Catalysts

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

2Department of Statistic, Faculty of Science and Analytical Data, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

3Center for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jl. Tungku link, BE1410, Brunei Darussalam

4 PT Agrindo, Raya Driyorejo Km. 19, Gresik, East Java, Indonesia

5 Laboratory of Energy, Center for Energy Studies, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

View all affiliations
Received: 19 Mar 2021; Revised: 18 Jul 2021; Accepted: 18 Jul 2021; Published: 30 Sep 2021; Available online: 19 Jul 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Optimisation of biodiesel production from non-edible Reutealis Trisperma oil (RTO) was investigated using Taguchi method. Biodiesel was produced via consecutive esterification and transesterification reactions. Esterification of RTO was carried out using acid catalyst to decrease the amount of free fatty acid from 2.24% to 0.09%. Subsequent transesterification of the treated oil with methanol over a series of CaO-ZnO catalysts was optimized based on the L9 Taguchi orthogonal approach. The optimization parameters are Ca/Zn ratio (0.25, 0.5, and 1), methanol/oil ratio (10, 20, and 30) and reaction time (0.5, 1, and 2 h). CaO-ZnO catalysts at variation of Ca/Zn ratios were prepared using co-precipitation method and characterized using XRD, SEM, TEM, and FTIR analysis. The amount of methyl ester yield was used as the response parameter in the S/N ratio analysis and Analysis of Variance (ANOVA). The optimum parameter for RTO transesterification to biodiesel was determined at Ca/Zn ratio of 1, methanol oil ratio of 30 and reaction time for 2 h. Transesterification under these optimized parameter generated 98% of biodiesel yield, inferring the validity of the statistical approach. Furthermore, ANOVA analysis also confirmed that all the parameters were significantly contributed at approximately equal percentage towards the amount of biodiesel. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Biodiesel; Reutealis trisperma oil; Taguchi; optimization; Transesterification
Funding: Institut Teknologi Sepuluh Nopember

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Leung, D.Y.C., Wu, X., Leung, M.K.H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. DOI: 10.1016/j.apenergy.2009.10.006
  2. Ngamcharussrivichai, C., Totarat, P., Bunyakiat, K. (2008). Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General, 341(1–2), 77–85. DOI: 10.1016/j.apcata.2008.02.020
  3. Piloto-Rodríguez, R., Sánchez-Borroto, Y., Lapuerta, M., Goyos-Pérez, L., Verhelst, S. (2013). Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 65, 255–261. DOI: 10.1016/j.enconman.2012.07.023
  4. Florez-Rodriguez, P.P., Pamphile-Adrián, A.J., Passos, F.B. (2014). Glycerol conversion in the presence of carbon dioxide on alumina supported nickel catalyst. Catalysis Today, 237, 38–46. DOI: 10.1016/j.cattod.2013.12.026
  5. Krishnamurthy, K.N., Sridhara, S.N., Ananda Kumar, C.S. (2020). Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renewable Energy, 146, 280–296. DOI: 10.1016/j.renene.2019.06.161
  6. Smith, B., Greenwell, H.C., Whiting, A. (2009). Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels. Energy & Environmental Science, 2(3), 262. DOI: 10.1039/b814123a
  7. da Silva, V.T., Sousa, L.A. (2013). Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 67-92, DOI: 10.1016/B978-0-444-56330-9.00003-6
  8. Ayetor, G.K., Sunnu, A., Parbey, J. (2015). Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera. Alexandria Engineering Journal, 54(4), 1285–1290. DOI: 10.1016/j.aej.2015.09.011
  9. Zhang, Y., Dubé, M.A., McLean, D.D., Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresources Technology, 90(3), 229–240. DOI: 10.1016/S0960-8524(03)00150-0
  10. Karabas, H. (2013). Biodiesel production from crude acorn (Quercus frainetto L.) kernel oil : An optimisation process using the Taguchi method. Renewable Energy, 53, 384–388. DOI: 10.1016/j.renene.2012.12.002
  11. Dhawane, S.H., Pratim, A., Kumar, T., Halder, G. (2017). Parametric optimization of biodiesel synthesis from rubber seed oil using iron doped carbon catalyst by Taguchi approach. Renewable Energy, 105, 616–624. DOI: 10.1016/j.renene.2016.12.096
  12. Endalew, A.K., Kiros, Y., Zanzi, R. (2011). Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy, 36(5), 2693–2700. DOI: 10.1016/
  13. Karmakar, B., Dhawane, S.H., Halder, G. (2018). Journal of Environmental Chemical Engineering Optimization of biodiesel production from castor oil by Taguchi design. Journal of Environmental Chemical Engineering, 6(2), 2684–2695. DOI: 10.1016/j.jece.2018.04.019
  14. Naveenkumar, R., Baskar, G. (2020). Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresource Technology, 315, 123852. DOI: 10.1016/j.biortech.2020.123852
  15. Mcneff, C.V., Mcneff, L.C., Yan, B., Nowlan, D.T., Rasmussen, M., Gyberg, A.E., Hoye, T.R. (2008). A continuous catalytic system for biodiesel production. Applied Catalysis A: General, 343, 39–48. DOI: 10.1016/j.apcata.2008.03.019
  16. Wu, H., Zhang, J., Wei, Q., Zheng, J., Zhang, J. (2013). Transesteri fi cation of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Processing Technology, 109, 13–18. DOI: 10.1016/j.fuproc.2012.09.03
  17. Zabeti, M., Mohd, W., Wan, A., Aroua, M.K. (2009). Activity of solid catalysts for biodiesel production : A review. Fuel Processing Technology, 90(6), 770–777. DOI: 10.1016/j.fuproc.2009.03.010
  18. Sharma, S., Rangaiah, G.P. (2013). Multi-objective optimization of a bio-diesel production process. Fuel, 103, 269–277. DOI: 10.1016/j.fuel.2012.05.035
  19. Kesic, Z., Lukic, I., Zdujic, M., Liu, H., Skala, D. (2012). Mechanochemically synthesized CaO·ZnO catalyst for biodiesel production. Procedia Engineering, 42, 1169–1178. DOI: 10.1016/j.proeng.2012.07.509
  20. Alba-Rubio, A.C., Santamaría-González, J., Mérida-Robles, J.M., Moreno-Tost, R., Martín-Alonso, D., Jiménez-López, A., Maireles-Torres, P. (2010). Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catalysis Today, 149(3–4), 281–287. DOI: 10.1016/j.cattod.2009.06.024
  21. Arana, J.T., Torres, J.J., Acevedo, D.F., Illanes, C.O., Ochoa, N.A., Pagliero, C.L. (2019). One-step synthesis of CaO-ZnO efficient catalyst for biodiesel production. International Journal of Chemical Engineering, 2019, 1806017. DOI: 10.1155/2019/1806017
  22. Kim, K. Do, Choi, D.W., Choa, Y., Kim, H.T. (2007). Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 311, 170–173, DOI: 10.1016/j.colsurfa.2007.06.017
  23. Kim, S., Yim, B., Park, Y. (2010). Application of Taguchi Experimental Design for the Optimization of Effective Parameters on the Rapeseed Methyl Ester Production. Environmental Engineering Research, 15(3), 129–134. DOI: 10.4491/eer.2010.15.3.129
  24. Kumar, R.S., Sureshkumar, K., Velraj, R. (2015). Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel, 140, 90–96. DOI: 10.1016/j.fuel.2014.09.103
  25. Soriano Jr., N.U., Venditti, R., Argyropoulos, D.S. (2009). Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel, 88(3), 560–565. DOI: 10.1016/j.fuel.2008.10.013
  26. Adewale, P., Vithanage, L.N., Christopher, L. (2017). Optimization of enzyme-catalyzed biodiesel production from crude tall oil using Taguchi method. Energy Conversion and Management, 154, 81–91. DOI: 10.1016/j.enconman.2017.10.045
  27. Pandit, P.R., Fulekar, M.H. (2019). Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renewable Energy, 136, 837–845. DOI: 10.1016/j.renene.2019.01.047
  28. Borah, M.J., Das, A., Das, V., Bhuyan, N., Deka, D. (2019b). Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel, 242, 345–354. DOI: 10.1016/j.fuel.2019.01.060
  29. Tang, Y., Xu, J., Zhang, J., Lu, Y. (2013). Biodiesel production from vegetable oil by using modi fi ed CaO as solid basic catalysts. Journal of Cleaner Production, 42, 198–203. DOI: 10.1016/j.jclepro.2012.11.001
  30. Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Fierro, J.L.G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3), 317–326. DOI: 10.1016/j.apcatb.2006.12.017
  31. Kanade, K.G., Kale, B.B., Aiyer, R.C., Das, B.K. (2006). Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Materials Research Bulletin, 41, 590–600. DOI: 10.1016/j.materresbull.2005.09.002
  32. Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87, 2798–2806. DOI: 10.1016/j.fuel.2007.10.019
  33. Kouzu, M., Yamanaka, S., Hidaka, J., Tsunomori, M. (2009). Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A : General, 355, 94–99. DOI: 10.1016/j.apcata.2008.12.003
  34. Verziu, M., Coman, S.M., Richards, R., Parvulescu, V.I. (2011). Transesterification of vegetable oils over CaO catalysts. Catalysis Today, 167(1), 64–70. DOI: 10.1016/j.cattod.2010.12.031
  35. Holilah, H., Prasetyoko, D., Oetami, T.P., Santosa, E.B., Zein, Y.M., Bahruji, H., Juwari, J. (2015). The potential of Reutealis trisperma seed as a new non-edible source for biodiesel production. Biomass Conversion and Biorefinery, 5(4), 347–353. DOI: 10.1007/s13399-014-0150-6

Last update:

No citation recorded.

Last update:

No citation recorded.