skip to main content

Nanoparticles Synergistic Effect with Various Substrate Pretreatment and their Comparison on Biogas Production from Algae Waste

Asad A. Zaidi1, 2scopus Sohaib Zia Khan3 orcid scopus Hamad Almohamadi4scopus Essam R. I. Mahmoud3orcid scopus Muhammad N. Naseer5scopus

1(1) Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan, China

2(2) College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

3Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

4 Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

5 Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan

View all affiliations
Received: 18 Mar 2021; Revised: 22 Apr 2021; Accepted: 23 Apr 2021; Published: 30 Jun 2021; Available online: 26 Apr 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Algae waste is one of the potential substrates for biogas and biohydrogen production and can comprehend multiple benefits of waste treatment and resource utilization. In view of the key bottlenecks such as low substrate degradation rate and poor productivity of algae waste production process, this study analyzes the combined effect of two metallic and metallic oxide nanoparticles with different substrate pretreatment methods (autoclave, ultrasonic, and microwave methods) to investigate the effect of anaerobic digestion of green algae (Enteromorpha). The results showed that out of the three pretreatment methods, microwave pretreatment and nanoparticles' synergistic effect significantly increases biogas production. The microbial community composition at the phylum level was analyzed. It was observed that the Firmicutes were most abundant across all samples. The relative abundance of Firmicutes for control, Ni NPs + MW, Co NPs + MW, and Fe3O4 NPs + MW groups were 51.78, 70.37, 75.77, and 83.93%,      respectively. The second most abundant was of Bacteroidetes that also contributes to hydrogen production. This relatively high abundance of Firmicutes and Bacteroidetes promises its potential applications in a hydrogen production facility. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Algae; Anaerobic Digestion; Biomass; Biogas; Nanoparticles; Pretreatment
Funding: Islamic University of Madinah

Article Metrics:

  1. Malik, A., Qureshi, S.R., Abbas, N., Zaidi, A.A. (2020). Energy and exergy analyses of a solar desalination plant for Karachi Pakistan. Sustainable Energy Technologies and Assessments, 37, 100596. DOI: 10.1016/j.seta.2019.100596
  2. Mehdi, G., Ali, N., Hussain, S., Zaidi, A.A., Shah, A.H., Azeem, M.M. (2019). Design and Fabrication of Automatic Single Axis Solar Tracker for Solar Panel. In IEEE Xplore, 18530781. Sukkur, Pakistan: 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). DOI: 10.1109/ICOMET.2019.8673496
  3. Mushtaq, K., Zaidi, A.A., Askari, S.J. (2016). Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan. Sustainable Energy Technologies and Assessments, 14, 21–25. DOI: 10.1016/j.seta.2016.01.001
  4. Ahmed, S.F., Mushtaq, K., Ali, A. (2016). Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan-manufacturing cost optimization. Biotechnology, 15, 112–118. DOI: 10.3923/biotech.2016.112.118
  5. Mondial, C., Gie, D.E.L.É., Gadonneix, P., Kim, Y.D., Meyers, K., Ward, G., Frei, C. (2013). World Energy Resources 2013. London: World Energy Council
  6. Cai, Y., Li, X., Zaidi, A.A., Shi, Y., Zhang, K., Feng, R., Lin, A., Liu, C. (2019). Effect of hydraulic retention time on pollutants removal from real ship sewage treatment via a pilot-scale air-lift multilevel circulation membrane bioreactor. Chemosphere, 236, 124338. DOI: 10.1016/j.chemosphere.2019.07.069
  7. Vasco-Correa, J., Khanal, S., Manandhar, A., Shah, A. (2018). Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresource Technology, 247, 1015–1026. DOI: 10.1016/j.biortech.2017.09.004
  8. Ma, H., Guo, Y., Qin, Y., Li, Y.-Y. (2018). Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion. Bioresource Technology, 269, 520–531. DOI: 10.1016/j.biortech.2018.08.114
  9. Feng, R., Zaidi, A.A., Zhang, K., Shi, Y. (2018). Optimisation of Microwave Pretreatment for Biogas Enhancement through Anaerobic Digestion of Microalgal Biomass. Periodica Polytechnica Chemical Engineering, 63, 65–72. DOI: 10.3311/PPch.12334
  10. Zaidi, A.A., Malik, A., Mushtaq, K., Ruizhe, F. (2018). Progress of Microalgal Biodiesel Research in Pakistan. Journal of Plant Science Current Research, 2, 2–7. DOI: 10.24966/PSCR-3743/100004
  11. Xia, A., Jacob, A., Tabassum, M.R., Herrmann, C., Murphy, J.D. (2016). Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresource Technology, 205, 118–125. DOI: 10.1016/j.biortech.2016.01.025
  12. Lee, K., Chantrasakdakul, P., Kim, D., Kong, M., Park, K.Y. (2014). Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production. Waste Management, 34, 1035–1040. DOI: 10.1016/j.wasman.2013.10.012
  13. Climent, M., Ferrer, I., Baeza, M.del.M., Artola, A., Vázquez, F., Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal, 133, 335–342. DOI: 10.1016/j.cej.2007.02.020
  14. Passos, F., Felix, L., Rocha, H., Pereira,, de Aquino, S. (2016). Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production. Bioresource Technology, 209, 305–312. DOI: 10.1016/j.biortech.2016.03.006
  15. González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P. (2012). Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 40, 105–111. DOI: 10.1016/j.biombioe.2012.02.008
  16. Antonio, F., Antunes, F., Gaikwad, S., Ingle, A.P. (2017). Nanotechnology for Bioenergy and Biofuel Production. Springer International Publishing, p. 3–18. doi: 10.1007/978-3-319-45459-7
  17. Zaidi, A.A., Ruizhe, F., Malik, A., Khan, S.Z., Bhutta, A.J., Shi, Y., Mushtaq, K. (2019). Conjoint effect of microwave irradiation and metal nanoparticles on biogas augmentation from anaerobic digestion of green algae. International Journal of Hydrogen Energy, 44, 14661–14670. DOI: 10.1016/j.ijhydene.2019.02.245
  18. Zaidi, A.A., RuiZhe, F., Shi, Y., Khan, S.Z., Mushtaq, K. (2018). Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. International Journal of Hydrogen Energy, 43, 14202–14213. DOI: 10.1016/j.ijhydene.2018.05.132
  19. Saxena, P., Harish, H. (2018). Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae. Current Pollution Reports, 4, 128–142. DOI: 10.1007/s40726-018-0088-6
  20. Chen, F., Xiao, Z., Yue, L., Wang, J., Feng, Y., Zhu, X., Wang, Z., Xing, B. (2019). Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environmental Science: Nano, 6, 1026–1042. DOI: 10.1039/C8EN01368C
  21. Zaidi, A.A., Feng, R., Malik, A., Khan, Z.S., Shi, Y., Bhutta, J.A., Shah, A.H. (2019). Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae. Processes, 7(1), 24. DOI: 10.3390/pr7010024
  22. Passos, F., Hernández-Mariné, M., García, J., Ferrer, I. (2014). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351–359. DOI: 10.1016/j.watres.2013.10.013
  23. Mendez, L., Mahdy, A., Demuez, M., Ballesteros, M., González-Fernández, C. (2014). Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: Organic matter solubilisation and biochemical methane potential. Fuel, 117, 674–679. DOI: 10.1016/j.fuel.2013.09.032
  24. Esquivel-Elizondo, S., Ilhan, Z.E., Garcia-Peña, E.I., Krajmalnik-Brown, R. (2017). Insights into Butyrate Production in a Controlled Fermentation System via Gene Predictions. MSystems, 2, e00051-17. DOI: 10.1128/mSystems.00051-17
  25. Zaidi, A.A., Khan, S.Z., Shi, Y. (2021). Optimization of nickel nanoparticles concentration for biogas enhancement from green algae anaerobic digestion. Materials Today: Proceedings, 39, 1025–1028. DOI: 10.1016/j.matpr.2020.04.762
  26. Abdelsalam, E., Samer, M., Attia, Y.A., Abdel-hadi, M.A., Hassan, H.E., Badr, Y. (2016). Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, 87, 592–598. DOI: 10.1016/j.renene.2015.10.053
  27. Fang, W., Zhang, P., Zhang, X., Zhu, X., van Lier, J.B., Spanjers, H. (2018). White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: Efficiency and mechanisms. Energy, 162, 534–541. DOI: 10.1016/
  28. Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361. DOI: 10.1016/j.watres.2014.07.040
  29. Cai, Y., Ben, T., Zaidi, A.A., Shi, Y., Zhang, K., Lin, A., Liu, C. (2019). Effect of pH on Pollutants Removal of Ship Sewage Treatment in an Innovative Aerobic-Anaerobic Micro-Sludge MBR System. Water, Air, & Soil Pollution, 230, 163. DOI: 10.1007/s11270-019-4211-0
  30. Zhang, Y., Xie, J., Liu, M., Tian, Z., He, Z., van Nostrand, J.D., Ren, L., Zhou, J., Yang, M. (2013). Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Water Research, 47, 6298–6308. DOI: 10.1016/j.watres.2013.08.003
  31. Ma, W., Han, Y., Ma, W., Han, H., Zhu, H., Xu, C., Li, K., Wang, D. (2017). Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor. Bioresource Technology, 244, 84–91. DOI: 10.1016/j.biortech.2017.07.083
  32. Chen, J., Zhang, M., Li, F., Qian, L., Lin, H., Yang, L., Wu, X., Zhou, X., He, Y., Liao, B.-Q. (2016). Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism. Water Research, 102, 82–89. DOI: 10.1016/j.watres.2016.06.028
  33. Kavitha, S., Preethi, J., Banu J.R., Yeom, I.T. (2017). Low temperature thermochemical mediated energy and economically efficient biological disintegration of sludge: Simulation and prediction studies for anaerobic biodegradation. Chemical Engineering Journal, 317, 481–492. DOI: 10.1016/j.cej.2017.02.092
  34. Chinese Environmental Protection Chief Bureau. (2002). Standard Methods for the Examination of Water and Waste Water. 4th ed. Beijing, China: Environmental Press
  35. Wang, T., Zhang, D., Dai, L., Chen, Y., Dai, X. (2016). Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Scientific Reports, 6, 25857. DOI: 10.1038/srep25857
  36. Appels, L., Houtmeyers, S., Degrève, J., Van Impe, J., Dewil, R. (2013). Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresource Technology,128, 598–603. DOI: 10.1016/j.biortech.2012.11.007
  37. Passos, F., Solé, M., García, J., Ferrer, I. (2013). Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Applied Energy, 108, 168–175. DOI: 10.1016/j.apenergy.2013.02.042
  38. Mahdy, A., Mendez, L., Ballesteros, M., González-Fernández, C. (2014). Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Conversion and Management, 85, 551–557. DOI: 10.1016/j.enconman.2014.04.097
  39. Ehimen, E.A., Holm-Nielsen, J.-B., Poulsen, M., Boelsmand, J.E. (2013). Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renewable Energy, 50, 476–480. DOI: 10.1016/j.renene.2012.06.064
  40. Kavitha, S., Kannah, R.Y., Yeom, I.T., Do, K.-U., Banu, J.R. (2015). Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresource Technology, 197, 383–392. DOI: 10.1016/j.biortech.2015.08.131
  41. Fang, D., Zhao, G., Xu, X., Zhang, Q., Shen, Q., Fang, Z. (2018). Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. Bioresource Technology, 249, 684–693. DOI: 10.1016/j.biortech.2017.10.063
  42. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M., Michel, G. (2011). Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2, 93. DOI: 10.3389/fmicb.2011.00093
  43. Cabrol, L., Marone, A., Tapia-Venegas, E., Steyer, J., Ruiz-filippi, G., Trably, E. (2017). Microbial ecology of fermentative hydrogen producing bioprocesses : useful insights for driving the ecosystem function. FEMS Microbiology Reviews, 41(2), 158–181. DOI: 10.1093/femsre/fuw043

Last update: 2021-06-12 05:48:57

No citation recorded.

Last update: 2021-06-12 05:48:57

No citation recorded.