skip to main content

The Potential of Cellulose as a Source of Bioethanol using the Solid Catalyst: A Mini-Review

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Central Java, 50275, Indonesia

Received: 17 Mar 2021; Revised: 5 Jul 2021; Accepted: 6 Jul 2021; Published: 30 Sep 2021; Available online: 8 Jul 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

One of the most important biofuels is cellulose ethanol which is a popular material for bioethanol production. The present cellulosic ethanol production is through the cellulolytic process and this involves the splitting of complex cellulose into simple sugars through the hydrolysis process of the lignocellulose pretreated with acids and enzymes after which the product is fermented and distilled. There are, however, some challenges due to the enzymatic and acid processes based on the fact that acid hydrolysis has the ability to corrode equipment and cause unwanted waste while the enzymatic hydrolysis process requires a longer time because enzymes are costly and limited. This means there is a need for innovations to minimize the problems associated with these two processes and this led to the application of solid catalysts as the green and effective catalyst to convert cellulose to ethanol. Solid catalysts are resistant to acid and base conditions, have a high surface area, and do not cause corrosion during the conversion of the cellulose due to their neutral pH. This review, therefore, includes the determination of the cellulose potential as feedstock to be used in ethanol production as well as the preparation and application of solid catalyst as the mechanism to convert cellulose into fuel and chemicals. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Cellulose; Bioethanol; Solid catalyst; Hydrolysis
Funding: Universitas Diponegoro under contract 118-28/UN7.6.1/PP/2021

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
Statistics:
Share:
  1. Examiner, P., Price, E.O. (2010) (12) United States Patent. vol. 2, no. 12
  2. Martins, F., Felgueiras, C., Smitkova, M., Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in european countries. Energies, 12(6), 1–11. DOI: 10.3390/en12060964
  3. Ogunsuyi, H.O., Olawale, C.A. (2021). Evaluation of Plantain Biomass (Musa paradisiaca L.), as Feedstock for Bio-Ethanol Production. Green Sustain. Chem., 11(02), 59–71. DOI: 10.4236/gsc.2021.112006
  4. Aditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H., Sebayang, A.H. (2016). Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev., 66, 631–653. DOI: 10.1016/j.rser.2016.07.015
  5. Sheldon, R.A. (2014). Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem., 16(3), 950–963. DOI: 10.1039/c3gc41935e
  6. Youngs, H., Somerville, C. (2012). Development of feedstocks for cellulosic biofuels. F1000 Biol. Rep., 4(1), 1–11. DOI: 10.3410/B4-10
  7. Bušić, A., Morzak, G., Belskaya, H., Šantek, I. (2018). Bioethanol Production from Renewable Raw Materials and Its Separation and Purification : A Review. Food Technology Biotechnology, 56(3), 289–311. DOI: 10.17113/ftb.56.03.18.5546
  8. Padella, M., O’Connell, A., Prussi, M. (2019). What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl. Sci., 9 (21), 4523. DOI: 10.3390/app9214523
  9. Kang, Q., Appels, L., Tan, T., Dewil, R. (2014). Bioethanol from lignocellulosic biomass: Current findings determine research priorities. Sci. World J., 2014, 298153. DOI: 10.1155/2014/298153
  10. Devarapalli, M., Atiyeh, H.K. (2015). A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res. J., 2(3), 268–280. DOI: 10.18331/BRJ2015.2.3.5
  11. Robak, K., Balcerek, M. (2018). Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol., 56(2), 174–187. DOI: 10.17113/ftb.56.02.18.5428
  12. Lennartsson, P.R., Erlandsson, P., Taherzadeh, M.J. (2014). Bioresource Technology Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol., 165, 3–8. DOI: 10.1016/j.biortech.2014.01.127
  13. Li, C., Xu, G., Wang, C., Ma, L., Qiao, Y., Zhang, Y., Fu, Y. (2019). One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WOx/HZSM-5. Green Chem., 21(9), 2234–2239. DOI: 10.1039/c9gc00719a
  14. Wahlström, R.M., Suurnäkki, A. (2015). Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem., 17(2), 694–714. DOI: 10.1039/c4gc01649a
  15. Li, G., Liu, W., Ye, C., Li, X., Si, C.L. (2018). Chemocatalytic Conversion of Cellulose into Key Platform Chemicals. Int. J. Polym. Sci., 2018, 4723573. DOI: 10.1155/2018/4723573
  16. Rosales-Calderon, O., Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 12(1), 240 (2019) DOI: 10.1186/s13068-019-1529-1
  17. Chin, K.L., Hng, P.S. (2013). A Real Story of Bioethanol from Biomass: Malaysia Perspective. In M.D. Matovic (Editor) Biomass Now - Sustain. Growth Use. IntechOpen. DOI: 10.5772/51198
  18. Ibrahim, H.A.H. (2012). Pretreatment of straw for bioethanol production. Energy Procedia, 14, 542–551. DOI: 10.1016/j.egypro.2011.12.973
  19. Khatri, P.K., Karanwal, N., Kaul, S., Jain, S.L. (2015). Sulfonated polymer impregnated carbon composite as a solid acid catalyst for the selective synthesis of furfural from xylose. Tetrahedron Lett., 56(10), 1203–1206. DOI: 10.1016/j.tetlet.2015.01.116
  20. Knözinger, H., Kochloefl, K. (2003). Heterogeneous Catalysis and Solid Catalysts. In Ullmann’s Encycl. Ind. Chem., Wiley. DOI: 10.1002/14356007.a05_313
  21. Guo, F., Fang, Z., Xu, C.C., Smith, R.L. (2012). Solid acid mediated hydrolysis of biomass for producing biofuels. Prog. Energy Combust. Sci., 38(5), 672–690. DOI: 10.1016/j.pecs.2012.04.001
  22. Sudiyani, Y., Hermiati, E. (2010). Utilization of Oil Palm Empty Fruit Bunch (Opefb) for Bioethanol Production Through Alkali and Dilute Acid Pretreatment and Simultaneous Saccharification and Fermentation. Indones. J. Chem., 10(2), 261–267. DOI: 10.22146/ijc.21471
  23. Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol., 83(1), 1–11. DOI: 10.1016/S0960-8524(01)00212-7
  24. Limayem, A., Ricke, S.C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci., 38(4), 449–467. DOI: 10.1016/j.pecs.2012.03.002
  25. Juanssilfero, A.B., Djohan, A.C., Purnawan, A., Yopi, Y. (2015). Bioethanol production from Indica IR.64 rice straw biomass by direct saccharification and fermentation. Int. J. Adv. Sci. Eng. Inf. Technol., 5(1), 1–5. DOI: 10.18517/ijaseit.5.1.467
  26. Parthasiwi, L.D., Kurniawan, D.A., Abhirama, N.G., Sudibyo, H., Pradana, Y.S. (2018). Evaluation of potential raw material for industrial scale bioethanol production in Indonesia. AIP Conf. Proc., 2026, 020039. DOI: 10.1063/1.5064999
  27. Zhao, Y., Damgaard, A., Christensen, T.H. (2018). Bioethanol from corn stover – a review and technical assessment of alternative biotechnologies. Prog. Energy Combust. Sci., 67, 275–291. DOI: 10.1016/j.pecs.2018.03.004
  28. Huang, Y.B., Fu, Y. (2013). Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem., 15(5), 1095–1111. DOI: 10.1039/c3gc40136g
  29. Delidovich, I., Leonhard, K., Palkovits, R. (2014). Cellulose and hemicellulose valorisation: An integrated challenge of catalysis and reaction engineering. Energy Environ. Sci., 7(9), 2803–2830. DOI: 10.1039/c4ee01067a
  30. Abe, M.M., Branciforti, M.C., Brienzo, M. (2021). Biodegradation of hemicellulose-cellulose-starch-based bioplastics and microbial polyesters. Recycling, 6(1), 2313-4321. DOI: 10.3390/RECYCLING6010022
  31. Chen, H. (2014). Biotechnology of lignocellulose: Theory and practice. Springer, Netherlands. DOI: 10.1007/978-94-007-6898-7
  32. Glaus, M.A., Van Loon, L.R. (2008). Degradation of cellulose under alkaline conditions: New insights from a 12 years degradation study. Environ. Sci. Technol., 42(8), 2906–2911. DOI: 10.1021/es7025517
  33. Azeh, Y., Olatunji, G.A., Mamza, P.A. (2012). Scanning Electron Microscopy and Kinetic Studies of Ketene-Acetylated Wood/Cellulose High-Density Polyethylene Blends. Int. J. Carbohydr. Chem., 2012, 1–7. DOI: 10.1155/2012/456491
  34. Sosiati, H., Muhaimin, M., Purwanto, P., Wijayanti, D.A., Triyana, K. (2014). Nanocrystalline Cellulose Studied with a Conventional SEM. In Proceedings of the 2014 International Conference on Physics, 12–15. Yogyakarta, Indonesia: International Conference on Physics 2014 (ICP-2014). DOI: 10.2991/icp-14.2014.3
  35. Poletto, M., Ornaghi Júnior, H.L., Zattera, A.J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials (Basel)., 7(9), 6105–6119. DOI: 10.3390/ma7096105
  36. Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., Ma, Z. (2018). Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag., 169(17), 228–237. DOI: 10.1016/j.enconman.2018.05.063
  37. Hernández-Flores, J.A., et al. (2020). Morphological and Electrical Properties of Nanocellulose Compounds and Its Application on Capacitor Assembly. Int. J. Polym. Sci., 2020, 1891064. DOI: 10.1155/2020/1891064
  38. Ong, T.C., Verel, R., Copéret, C. (2016). Solid-state NMR: Surface chemistry applications. Encycl. Spectrosc. Spectrom., 11(494), 121–127. DOI: 10.1016/B978-0-12-409547-2.12130-4
  39. Liu, B., Zhang, Z. (2016). Catalytic Conversion of Biomass into Chemicals and Fuels over Magnetic Catalysts. ACS Catal., 6(1), 326–338. DOI: 10.1021/acscatal.5b02094
  40. van Santen, R. (2009). Future perspectives in catalysis. NRSC-Catalysis, p. 82, [Online]. Available: http://www.nrsc-catalysis.nl/files/media/scientific_reports/Future_perspectives_in_Catalysis.pdf
  41. De Jong, K.P. (2009) Synthesis of Solid Catalayst. In Krijn P. de Jong (Editor): Wiley . DOI: 10.1002/9783527626854.ch1
  42. Friend, C.M., Xu, B. (2017). Heterogeneous catalysis: A central science for a sustainable future. Acc. Chem. Res., 50(3), 517–521. DOI: 10.1021/acs.accounts.6b00510
  43. Norskov, J., Chen, J. (2016). Sustainable Ammonia Synthesis. Report, DOE Roundtable, pp. 1–23, [Online]. Available: https://www.osti.gov/biblio/1283146
  44. Schlögl, R. (2003). Catalytic synthesis of ammonia - A ‘never-ending story’?. Angew. Chemie - Int. Ed., 42(18), 2004–2008. DOI: 10.1002/anie.200301553
  45. Dumbre, D., Choudhary, V.R. (2020). Properties of functional solid catalysts and their characterization using various analytical techniques. In C.M. Hussain, P. Sudarsanam (Editors) Advanced Functional Solid Catalysts for Biomass Valorization. Elsevier Inc. DOI: 10.1016/B978-0-12-820236-4.00003-9
  46. Schlögl, R. (2015). Heterogeneous catalysis. Angew. Chemie - Int. Ed., 54(11), 3465–3520. DOI: 10.1002/anie.201410738
  47. Campanati, M., Fornasari, G., Vaccari, A. (2003). Fundamentals in the preparation of heterogeneous catalysts. Catal. Today, 77(4), 299–314. DOI: 10.1016/S0920-5861(02)00375-9
  48. Hara, M., Nakajima, K., Kamata, K. (2015). Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci. Technol. Adv. Mater., 16(3), 1–22. DOI: 10.1088/1468-6996/16/3/034903
  49. Védrine, J.C. (2017). Heterogeneous catalysis on metal oxides. Catalysts, 7(11), 341. DOI: 10.3390/catal7110341
  50. Kumar, S., Saralch, S., Jabeen, U., Pathak, D. (2020). Metal oxides for energy applications. In S. Thomas, A.T. Sunny, P. Velayudhan (Editors) Colloidal Metal Oxide Nanoparticles—Synthesis, Characterization and Applications. Elsevier Inc. DOI: 10.1016/B978-0-12-813357-6.00017-6
  51. Carrier, X., Royer, S., Marceau, E. (2018). Synthesis of metal oxide catalysts. In J.C. Védrine (Editor) Metal Oxides in Heterogeneous Catalysis. Elsevier Inc. DOI: 10.3390/ma12040668
  52. Gates, B.C. (2019). Atomically Dispersed Supported Metal Catalysts: Seeing Is Believing. Trends Chem., 1(1), 99–110. DOI: 10.1016/j.trechm.2019.01.004
  53. Vu, X.H., Armbruster, U., Martin, A. (2016). Micro/mesoporous zeolitic composites: Recent developments in synthesis and catalytic applications. Catalysts, 6(12) 2016. DOI: 10.3390/catal6120183
  54. Shi, J., Wang, Y., Yang, W., Tang, Y., Xie, Z. (2015). Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chem. Soc. Rev., 44(24), 8877–8903. DOI: 10.1039/c5cs00626k
  55. Shao, H., Pinnavaia, T.J. (2010). Synthesis and properties of nanoparticle forms saponite clay, cancrinite zeolite and phase mixtures thereof. Microporous Mesoporous Mater., 133(1–3), 10–17. DOI: 10.1016/j.micromeso.2010.04.002
  56. Louis, C. (2016). Chemical preparation of supported bimetallic catalysts. Gold-based bimetallic, a case study. Catalysts, 6(8), 183. DOI: 10.3390/catal6080110
  57. Sietsma, J.R.A., van Dillen, A.J., de Jongh, P.E., de Jong, K.P. (2006). Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying. In Studies in Surface Science and Catalysis, 162, 95-102. Elsevier Masson SAS. DOI: 10.1016/s0167-2991(06)80895-5
  58. Bhaskaruni, S.V.H.S., Maddila, S., Gangu, K.K., Jonnalagadda, S.B. (2020). A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 13(1), 1142–1178. DOI: 10.1016/j.arabjc.2017.09.016
  59. Ciriminna, R., Fidalgo, A., Pandarus, V., Béland, F., Ilharco, L.M., Pagliaro, M. (2013). The sol-gel route to advanced silica-based materials and recent applications. Chem. Rev., 113(8), 6592–6620. DOI: 10.1021/cr300399c
  60. Esposito, S. (2019). ‘Traditional’ sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials (Basel)., 12(4), 1–25. DOI: 10.3390/ma12040668
  61. Ward, D., Edmond, I. (1996). Preparing Catalytic Materials by the Sol-Gel Method. Ind. Eng. Chem. Res., 34(2), 421–433. DOI: 10.1021/ie00041a001
  62. Schüth, F., Unger, K. (2008). Precipitation and Coprecipitation. In G. Ertl, H. Knözinger, J. Weitkamp (Editors) Preparation of Solid Catalysts, 60–84, John Wiley & Sons, Inc. DOI: 10.1002/9783527619528.ch3d
  63. Baig, M.Z., Dharmadhikari, S.M., Ismail, S. (2017). Technological processes for conversion of lignocellulosic biomass to bioethanol. J. Pure Appl. Microbiol., 11(4), 1863–1881. DOI: 10.22207/JPAM.11.4.27
  64. Wang, S., Sima, G., Cui, Y., Chang, L., Gan, L. (2020). Efficient hydrolysis of cellulose to glucose catalyzed by lignin-derived mesoporous carbon solid acid in water. Chinese J. Chem. Eng., 289(7), 1866–1874. DOI: 10.1016/j.cjche.2020.03.012
  65. Goswami, M., Meena, S., Navatha, S., Prasanna Rani, K.N., Pandey, A., Sukumaran, R.K., Prasad, R.B.N., Prabhavathi Devi, B.L.A. (2015). Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol. Bioresour. Technol., 188, 99–102. DOI: 10.1016/j.biortech.2015.03.012
  66. Hemalatha H., Lakshmi, A.B. (2020). Catalytic Hydrolysis of Fruit Waste Using Magnetic Carbon Acid Catalyst for Bioethanol Production. Waste and Biomass Valorization, 12, 971–983. DOI: 10.1007/s12649-020-01019-z
  67. Li, S., Qian, E.W. (2011). Direct Saccharification of Rice Straw Using a Solid Acid Catalyst. Journal of the Japan Institute of Energy, 90(11), 1065–1071. DOI: 10.3775/jie.90.1065
  68. Sukma, L.P.P., Wang, X., Li, S., Nguyen, T.T., Pu, J., Qian, E.W. (2019). Two-Step Saccharification of Rice Straw Using Solid Acid Catalysts. Ind. Eng. Chem. Res., 58(14), 5686–5697. DOI: 10.1021/acs.iecr.8b06473
  69. Klaas, M.R.G., Schöne, H. (2009). Direct, high-yield conversions of cellulose into biofuel and platform chemicals - On the way to a sustainable biobased economy. ChemSusChem, 2(2), 127–128. DOI: 10.1002/cssc.200800186
  70. Kamm, B., Gruber, P.R., Kamm, M. (2016). Biorefineries-Industrial Processes and Products. In Ullmann’s Encycl. Ind. Chem., pp. 1–38. DOI: 10.1002/14356007.l04_l01.pub2
  71. Coates, W. (2006). Book review. Ind. Crops Prod., 23(2), 223–224.DOI: 10.1016/j.indcrop.2005.06.002
  72. Song, H., Wang, P., Li, S., Deng, W., Li, Y., Zhang, Q., Wang, Y. (2019). Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles. Chem. Commun., 55, 4303–4306. DOI: 10.1039/C9CC00619B
  73. Liu, Y., Luo, C., Liu, H., (2012). Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew. Chemie - Int. Ed., 51(13), 3249–3253. DOI: 10.1002/anie.201200351
  74. Chen, X., Chen, J., Zhao, Y., Chen, M., Wan, H. (2012). Effect of dispersion on catalytic performance of supported pt catalysts for co oxidation. Chinese J. Catal., 33(11–12), 1901–1905. DOI: 10.1016/S1872-2067(11)60447-6
  75. Yabushita, M., Kobayashi, H., Fukuoka, A. (2010). Catalytic transformation of cellulose into platform chemicals. Appl. Catal. B Environ., 145, 1–9. DOI: 10.1016/j.apcatb.2013.01.052
  76. Shrotri, A., Kobayashi, H., Fukuoka, A. (2018). Cellulose Depolymerization over Heterogeneous Catalysts. Acc. Chem. Res., 51(3), 761–768. DOI: 10.1021/acs.accounts.7b00614
  77. Bali, G., Meng, X., Deneff, J.I., Sun, Q., Ragauskas, A.J. (2015). The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem, 8(2), 275–279. DOI: 10.1002/cssc.201402752
  78. Gumina, B., Espro, C., Galvagno, S., Pietropaolo, R., Mauriello, F. (2019). Bioethanol Production from Unpretreated Cellulose under Neutral Selfsustainable Hydrolysis/Hydrogenolysis Conditions Promoted by the Heterogeneous Pd/Fe3O4 Catalyst. ACS Omega, 4(1), 352–357. DOI: 10.1021/acsomega.8b03088
  79. Liao, F., Lo, T.W.B., Tsang, S.C.E. (2015). Recent Developments in Palladium-Based Bimetallic Catalysts. ChemCatChem, 7(14), 1998–2014. DOI: 10.1002/cctc.201500245
  80. Yang, M., Qi, H., Liu, F., Ren, Y., Pan, X., Zhang, L., Liu, X., Wang, H., Pang, J., Zheng, M., Wang, A., Zhang, T. (2019). One-Pot Production of Cellulosic Ethanol via Tandem Catalysis over a Multifunctional Mo/Pt/WOx Catalyst. Joule, 3(8), 1937–1948. DOI: 10.1016/j.joule.2019.05.020

Last update:

No citation recorded.

Last update:

No citation recorded.