skip to main content

Understanding Pore Surface Modification of Sucrose-Modified Iron Oxide/Silica Mesoporous Composite for Degradation of Methylene Blue

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A Surakarta, Indonesia

2Department of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A Surakarta, Indonesia

3Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, Indonesia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Sekip Utara Bulaksumur 21 Yogyakarta, Indonesia

View all affiliations
Received: 15 Mar 2021; Revised: 30 Apr 2021; Accepted: 5 May 2021; Published: 30 Sep 2021; Available online: 10 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Santa Barbara Amorphous (SBA-15) containing iron oxide with a sucrose-modified in a heterogeneous reaction for degradation methylene blue (MB) successful synthesized used hydrothermal, ultrasonication, and wet impregnation method. SBA-15 is mesoporous silica that can easily serve as external and internal surfaces making it suitable for a wide range of applications. The structure and morphology of materials were characterized using Surface Area Analyzer (SAA), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), and Transmission Electron Microscopy (TEM). Iron oxide impregnated as a maghemite phase has an average size of 12 nm and well distributed on the SBA-15. After modified with sucrose the materials remaining stable, which has a two-dimensional hexagonal (p6mm) structure, high specific surface area, and large pore volume (up to 1.82 cm3.g1). The degradation of MB was evaluated under visible light irradiation using UV-Vis spectroscopy. Catalytic activity showed efficiencies of 52.9; 70.2; and 21.1% for SBA-15, Fe2O3/SBA-15, and sucrose-modified Fe2O3/SBA-15 respectively. Sucrose-modified Fe2O3/SBA-15 has the lowest efficiency, which probably occurs due to the presence of pore-blocking and the formation of micropores on the external pore. The modification with sucrose has the advantage of producing a high surface area even though there is a catalytic center due to partial decomposition which causes a decrease in the efficiency of degradation of MB. All materials provide a high micro surface area so that they can be further adapted and can be widely applied to many potential applications as both catalyst support and an adsorbent. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Sucrose-modified; iron oxide silica; SBA-15; composite; Fe2O3/SBA-15; methylene blue
Funding: Program Penelitian Kolaborasi Indonesia (PPKI) under contract 102.1/UN27.22/HK.07.00/2021; Sebelas Maret University ; Gadjah Mada University

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Elahi, B., Mirzaee, M., Darroudi, M., Kazemi Oskuee, R., Sadri, K., Amiri, M.S. (2019). Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceramics International, 45, 4790-4797. DOI: 10.1016/j.ceramint.2018.11.173
  2. Esfahani, M.R., Aktij, S.A., Dabaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J., Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A., Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465-499. DOI: 10.1016/j.seppur.2018.12.050
  3. Antonopoulou, M., Evgenidou, E., Lambropoulou, D., Konstantinou, I. (2014). A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res., 53, 215-234. DOI: 10.1016/j.watres.2014.01.028
  4. Tada, H., Kiyonaga, T., Naya, S. (2009). Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev., 38, 1849-1858. DOI: 10.1039/b822385h
  5. Tang, J., Wang, T., Sun, X., Guo, Y., Xue, H., Guo, H., Liu, M., Zhang, X., He, J. (2013). Effect of transition metal on catalytic graphitization of ordered mesoporous carbon and Pt/metal oxide synergistic electrocatalytic performance. Microporous and Mesoporous Materials, 177, 105-112. DOI: 10.1016/j.micromeso.2013.04.027
  6. Ye, M., Tao, Y., Jin, F., Ling, H., Wu, C., Williams, P.T., Huang, J. (2018). Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catalysis Today, 307, 154-161. DOI: 10.1016/j.cattod.2017.05.077
  7. Bai, K., Hao, J., Yang, Y., Qian, A. (2020). The effect of hydrothermal temperature on the properties of SBA-15 materials. Heliyon, 6, e04436. DOI: 10.1016/j.heliyon.2020.e04436
  8. Kruk, M., Jaroniec, M., Ko, C.H., Ryoo, R. (2000). Characterization of the porous structure of SBA-15. J Chemistry of Materials, 12, 1961-1968. DOI: 10.1021/cm000164e
  9. Sanjini, N.S., Velmathi, S. (2014). Iron impregnated SBA-15, a mild and efficient catalyst for the catalytic hydride transfer reduction of aromatic nitro compounds. RSC Advances, 4, 15381-15388. DOI: 10.1039/c3ra46303f
  10. Guillet-Nicolas, R., Marcoux, L., Kleitz, F. (2010). Insights into pore surface modification of mesoporous polymer–silica composites: introduction of reactive amines. New Journal of Chemistry. 34, 355-366. DOI: 10.1039/b9nj00478e
  11. Dong, X., Zhao, X., Wang, L., Zhang, M. (2016). One-step synthesis of hydrophobic fluorinated ordered mesoporous carbon materials. RSC Advances, 6, 48870-48874. DOI: 10.1039/c6ra06583j
  12. Kim, D., Zussblatt, N.P., Chung, H.T., Becwar, S.M., Zelenay, P., Chmelka, B.F. (2018). Highly Graphitic Mesoporous Fe,N-Doped Carbon Materials for Oxygen Reduction Electrochemical Catalysts. ACS Appl Mater Interfaces, 10, 25337-25349. DOI: 10.1021/acsami.8b06009
  13. Naushad, M., Ahamad, T., Al-Maswari, B.M., Abdullah Alqadami, A., Alshehri, S.M. (2017). Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chemical Engineering Journal, 330, 1351-1360. DOI: 10.1016/j.cej.2017.08.079
  14. Barczak, M., Michalak-Zwierz, K., Gdula, K., Tyszczuk-Rotko, K., Dobrowolski, R., Dąbrowski, A. (2015). Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous and Mesoporous Materials, 211, 162-173. DOI: 10.1016/j.micromeso.2015.03.010
  15. Banitalebi-Dehkordi, A., Shams, E., Farzin Nejad, N. (2018). Synthesis of iron oxide nanoparticles modified mesoporous carbon and investigation of its application for removing dibenzothiophene from fuel model. Environmental Nanotechnology, Monitoring & Management, 10, 179-188. DOI: 10.1016/j.enmm.2018.05.001
  16. Tyapkin, P.Y., Petrov, S.A., Chernyshev, A.P., Larichev, Y.V., Kirik, S.D., Gribov, P.A., Uvarov, N.F. (2017). Properties of iron oxides inserted into SBA-15 mesoporous silica. Materials Today: Proceedings, 4, 11392-11395. DOI: 10.1016/j.matpr.2017.09.015
  17. Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A.B., Filip, J., Zbořil, R., Deligiannakis, Y., Karakassides, M.A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636-547. DOI: 10.1016/j.carbon.2015.05.081
  18. Tran, M.H., Park, B.J., Kim, B.H., Yoon, H.H. (2020). Mesoporous silica template-derived nickel-cobalt bimetallic catalyst for urea oxidation and its application in a direct urea/H2O2 fuel cell. International Journal of Hydrogen Energy, 45, 1784-1792. DOI: 10.1016/j.ijhydene.2019.11.073
  19. Barczak, M., Oszust-Cieniuch, M., Borowski, P., Fekner, Z., Zięba, E. (2011). SBA-15 silicas containing sucrose. Journal of Thermal Analysis and Calorimetry, 108, 1093-1099. DOI: 10.1007/s10973-011-1973-z
  20. Li, H., Zhao, Y.S., Han, Z.T., Hong, M. (2015). Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration. Water Sci Technol, 72, 1463-1471. DOI: 10.2166/wst.2015.308
  21. Janiszewska, E., Kowalak, S. (2017). Synthesis and catalytic performance in the propene epoxidation of a vanadium catalyst supported on mesoporous silica obtained with the aid of sucrose. New Journal of Chemistry, 41, 2955-1963. DOI: 10.1039/c6nj03632e
  22. Bharath, G., Anwer, S., Mangalaraja, R.V., Alhseinat, E., Banat, F., Ponpandian, N. (2018). Sunlight-Induced photochemical synthesis of Au nanodots on alpha-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties. Sci Rep., 8, 5718. DOI: 10.1038/s41598-018-24066-y
  23. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548-552. DOI: 10.1126/science.279.5350.548
  24. Belmoujahid, Y., Bonne, M., Scudeller, Y., Schleich, D., Grohens, Y., Lebeau, B. (2015). SBA-15 mesoporous silica as a super insulating material. The European Physical Journal Special Topics, 224, 1775-1785. DOI: 10.1140/epjst/e2015-02498-3
  25. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051-1069. DOI: 10.1515/pac-2014-1117
  26. Pudukudy, M., Yaakob, Z., Akmal, Z.S. (2015). Direct decomposition of methane over Pd promoted Ni/SBA-15 catalysts. Applied Surface Science, 353, 127-136. DOI: 10.1016/j.apsusc.2015.06.073
  27. Mahdavi, V., Mardani, M. (2015). Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase. Materials Chemistry and Physics, 155, 136-146. DOI: 10.1016/j.matchemphys.2015.02.011
  28. Deng, R., You, K., Yi, L., Zhao, F., Jian, J., Chen, Z., Liu, P., Ai, Q., Luo, H. (2018). Solvent-Free, Low-Temperature, Highly Efficient Catalytic Nitration of Toluene with NO2 Promoted by Molecular Oxygen over Immobilized AlCl3–SiO2. Industrial & Engineering Chemistry Research, 57, 12993-13000. DOI: 10.1021/acs.iecr.8b02786
  29. Sun, Q., Hu, X., Zheng, S., Zhang, J., Sheng, J. (2019). Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(). Environ Pollut., 245, 53-62. DOI: 10.1016/j.envpol.2018.10.121
  30. Sharma, G., Jeevanandam, P. (2013). Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route. RSC Adv., 3, 189-200. DOI: 10.1039/c2ra22004k
  31. Sardarian, A.R., Eslahi, H., Esmaeilpour, M. (2019). Green, cost‐effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4@SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst. Applied Organometallic Chemistry, 33, e4856. DOI: 10.1002/aoc.4856
  32. Pan, X., Shi, Z., Shi, C., Hu, X., Wu, L. (2016). Interactions between inorganic surface treatment agents and matrix of Portland cement-based materials. Construction and Building Materials, 113, 721-731. DOI: 10.1016/j.conbuildmat.2016.03.091
  33. Fiorilli, S., Rivoira, L., Calì, G., Appendini, M., Bruzzoniti, M.C., Coïsson, M., Onida, B. (2017). Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water. Applied Surface Science, 411, 457-465. DOI: 10.1016/j.apsusc.2017.03.206
  34. Ding, Y., Dan, H., Dong, X., Xian, Q., Wang, Y., Lu, X. (2017). A convenient solvothermal method to synthesize highly ordered mesoporous silica SBA-15 with high loading of amino groups. Materials Chemistry and Physics. 192, 156-60, DOI: 10.1016/j.matchemphys.2017.01.061
  35. Erdogan, B,. Arbag, H., Yasyerli, N. (2018). SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. International Journal of Hydrogen Energy, 43, 1396-1405. DOI: 10.1016/j.ijhydene.2017.11.127
  36. Arroyo-Gómez, J.J., Toncón-Leal, C.F., dos Santos, A.J., Moreno, M.S., Sapag, K., Martínez-Huitle, C.A. (2020). Fe/SBA-15: Characterization and its application to a heterogeneous solar photo-Fenton process in order to decolorize and mineralize an azo dye. Materials Letters: X. 5, 100034. DOI: 10.1016/j.mlblux.2019.100034
  37. Karthikeyan, S., Pachamuthu, M.P., Isaacs, M.A., Kumar, S., Lee, A.F., Sekaran, G. (2016). Cu and Fe oxides dispersed on SBA-15: A Fenton type bimetallic catalyst for N,N -diethyl- p -phenyl diamine degradation. Applied Catalysis B: Environmental, 199, 323-330. DOI: 10.1016/j.apcatb.2016.06.040
  38. Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F.M., Khan, M.I., Jalal, F., Iqbal, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8, 6115-6124. DOI: 10.1016/j.jmrt.2019.10.006
  39. Ahmmad, B., Leonard, K., Shariful, I.Md., Kurawaki, J., Muruganandham, M., Ohkubo, T., Kuroda, Y. (2013). Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Advanced Powder Technology, 24, 160-167. DOI: 10.1016/j.apt.2012.04.005
  40. Sharma, J.K., Srivastava, P., Akhtar, M.S., Singh, G., Ameen, S. (2015). α-Fe2O3 hexagonal cones synthesized from the leaf extract of Azadirachta indica and its thermal catalytic activity. New Journal of Chemistry, 39, 7105-7111. DOI: 10.1039/c5nj01344e
  41. Bassi, P.S., Gurudayal, G., Wong, L.H., Barber, J. (2014). Iron based photoanodes for solar fuel production. Physical Chemistry Chemical Physics, 16, 11834-11842. DOI: 10.1039/c3cp55174a
  42. Xiao, Y., Tian, G., Li, W., Xie, Y., Jiang, B., Tian, C., Zhao, D., Fu, H. (2019). Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. J. Am. Chem. Soc., 141, 2508-2515. DOI: 10.1021/jacs.8b12428
  43. Suman, S., Chahal, S., Kumar, A., Kumar, P. (2020). Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity. Crystals, 10(4), 273. DOI: 10.3390/cryst10040273
  44. Muraro, P.C.L., Mortari, S.R., Vizzotto, B.S., Chuy, G., Dos Santos, C., Brum, L.F.W., da Silva, W.L. (2020). Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci Rep., 10, 3055. DOI: 10.1038/s41598-020-59987-0
  45. Twinkle, T., Singh, K., Bansal, S.A., Kumar, S. (2019). Graphene oxide (GO)/Copper doped Hematite (α-Fe2O3) nanoparticles for organic pollutants degradation applications at room temperature and neutral pH. Materials Research Express, 6, 115026. DOI: 10.1088/2053-1591/ab4459

Last update: 2021-10-14 18:23:02

No citation recorded.

Last update: 2021-10-14 18:23:02

No citation recorded.