skip to main content

Synthesis of Ash Derived Co/Zeolite Catalyst for Hydrogen Rich Syngas Production via Partial Oxidation of Methane

1School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12 Islamabad (44000), Pakistan

2Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

3U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12 Islamabad (44000), Pakistan

4 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12 Islamabad (44000), Pakistan, Pakistan

View all affiliations
Received: 15 Mar 2021; Revised: 30 Apr 2021; Accepted: 5 May 2021; Published: 30 Sep 2021; Available online: 10 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The objective of this study was to analyze the catalytic performance of series of cobalt-modified Zeolite-4A supported catalysts for the syngas (CO and H2) production at 800 °C via the partial oxidation of methane (POM). The Co/Zeolite-4A catalyst was synthesized using a two-step hydrothermal method from coal fly ash. The synthesized catalysts were characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), and Thermogravimetric Analysis (TGA). The catalyst shows a crystalline structure with stability up to 900 °C. The catalytic performance analysis shows the CH4 conversion increases from 29 to 68% for 0 and 10 wt% Co over Zeolite-4A, respectively. The H2 selectivity was improved from 28–56% while CO selectivity increased from 24–52 % making H2/CO ratio > 1. The stability analysis shows the 10% Co/Zeolite-4A withstand for 24 h a time on stream (TOS). Finally, the spent catalyst analysis was carried out to check the carbon formation along with its structural analysis. The minimal carbon formation is analyzed in 24 h TOS for POM reaction. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Partial oxidation of Methane (POM); Zeolite-4A; Hydrogen production; Syngas;
Funding: USPCAS-E and SCME NUST

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
Statistics:
  1. Khoja, A.H., Tahir, M., Amin, N.A.S. (2019). Process optimization of DBD plasma dry reforming of methane over Ni/La2O3-MgAl2O4 using multiple response surface methodology. International Journal of Hydrogen Energy, 44(23), 11774-11787. DOI: 10.1016/j.ijhydene.2019.03.059
  2. Li, G., Cheng, H., Zhao, H., Lu, X., Xu, Q., Wu, C. (2017). Hydrogen production by CO2 reforming of CH4 in coke oven gas over Ni−Co/MgAl2O4 catalysts. Catalysis Today, 318, 46-51. DOI: 10.1016/j.cattod.2017.12.033
  3. Dedov, A.G., Loktev, A.S., Mukhin, I.E., Karavaev, A.A., Tyumenova, S.I., Baranchikov, A.E., Ivanov, V.K., Maslakov, K.I., Bykov, M.A., Moiseev, I.I. (2018). Synthesis Gas Production by Partial Oxidation of Methane and Dry Reforming of Methane in the Presence of Novel Ni–Co/MFI Catalysts. Petroleum Chemistry, 58(3), 203-213. DOI: 10.1134/S0965544118030052
  4. Fakeeha, A., Ibrahim, A.A., Aljuraywi, H., Alqahtani, Y., Alkhodair, A., Alswaidan, S., Abasaeed, A.E., Kasim, S.O., Mahmud, S., Al-Fatesh, A.S. (2020). Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia. Processes, 8(5), 499. DOI: 10.3390/pr8050499
  5. Fonseca, H.C., Bion, N., Epron, F., Ruiz, D., Marchetti, S.G., Bengoa, J.F., do Carmo Rangel, M. (2020). Partial oxidation of methane over lanthana-supported catalysts derived from perovskites. Catalysis Today, 344, 212-226. DOI: 10.1016/j.cattod.2019.02.010
  6. Khoja, A.H., Tahir, M., Amin, N.A.S. (2019). Evaluating the Performance of a Ni Catalyst Supported on La2O3-MgAl2O4 for Dry Reforming of Methane in a Packed Bed Dielectric Barrier Discharge Plasma Reactor. Energy & Fuels, 33(11), 11630-11647. DOI: 10.1021/acs.energyfuels.9b02236
  7. He, S., Castello, D., Krishnamurthy, K.R., Al-Fatesh, A.S., Winkelman, J.G.M., Seshan, K., Heeres, H.J. (2019). Kinetics of long chain n-paraffin dehydrogenation over a commercial Pt-Sn-K-Mg/γ-Al2O3 catalyst: Model studies using n-dodecane. Applied Catalysis A: General, 579, 130-140. DOI: 10.1016/j.apcata.2019.04.026
  8. Gillessen, B., Heinrichs, H., Hake, J.F., Allelein, H.J. (2019). Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition. Applied Energy, 251, 113377. DOI: 10.1016/j.apenergy.2019.113377
  9. Kaddeche, D., Djaidja, A., Barama, A. (2017). Partial oxidation of methane on co-precipitated Ni–Mg/Al catalysts modified with copper or iron. International Journal of Hydrogen Energy, 42(22), 15002-15009. DOI: 10.1016/j.ijhydene.2017.04.281
  10. Pruksawan, S., Kitiyanan, B., Ziff, R.M. (2016). Partial oxidation of methane on a nickel catalyst: Kinetic Monte-Carlo simulation study. Chemical Engineering Science, 147, 128-136. DOI: 10.1016/j.ces.2016.03.012
  11. Pantaleo, G., La Parola, V., Deganello, F., Singha, R.K., Bal, R., Venezia, A.M. (2016). Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects. Applied Catalysis B: Environmental, 189, 233-241. DOI: 10.1016/j.apcatb.2016.02.064
  12. Gao, H., Zhou, L., Luo, X., Liang, Z. (2018). Optimized process configuration for CO2 recovery from crude synthesis gas via a rectisol wash process. Journal of Greenhouse Gas Control, 79, 83-90. DOI: 10.1016/j.ijggc.2018.10.005
  13. Zhang, L., Zhang, Q., Liu, Y., Zhang, Y. (2016). Dry reforming of methane over Ni/MgO-Al2O3 catalysts prepared by two-step hydrothermal method. Applied Surface Science, 389, 25-33. DOI: 10.1016/j.apsusc.2016.07.063
  14. Al-Fatesh, A.S., Abu-Dahrieh, J.K., Atia, H., Armbruster, U., Ibrahim, A.A., Khan, W.U., Fakeeha, A.H. (2019). Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 44(39), 21546-21558. DOI: 10.1016/j.ijhydene.2019.06.085
  15. Yang, W., Fan, A., Yao, H., Liu, W. (2016). Effect of reduced pressures on the combustion efficiency of lean H2/air flames in a micro cavity-combustor. International Journal of Hydrogen Energy, 41(34), 15354-15361. DOI: 10.1016/j.ijhydene.2016.06.208
  16. Khoja, A.H., Tahir, M., Amin, N.A.S. (2019). Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane. Energy Conversion and Management, 183, 529-560. DOI: 10.1016/j.enconman.2018.12.112
  17. Iulianelli, A., Liguori, S., Wilcox, J., Basile, A. (2016). Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catalysis Reviews, 58(1), 1-35. DOI: 10.1080/01614940.2015.1099882
  18. Abdulrasheed, A., Jalil, A.A., Gambo, Y., Ibrahim, M., Hambali, H.U., Hamid, M.Y.S. (2019). Reviews, A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews, 108, 175-193. DOI: 10.1016/j.rser.2019.03.054
  19. Chein, R.Y., Fung, W.Y. (2019). Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 44 (28), 14303-14315. DOI: 10.1016/j.ijhydene.2019.01.113
  20. Khoja, A.H., Anwar, M., Shakir, S., Mehran, M.T., Mazhar, A., Javed, A., Amin, N.A.S. (2020). Thermal dry reforming of methane over La2O3 co-supported Ni/MgAl2O4 catalyst for hydrogen-rich syngas production. Research on Chemical Intermediates, 46, 3817–3833. DOI: 10.1007/s11164-020-04174-z
  21. Yasuda, S., Osuga, R., Kunitake, Y., Kato, K., Fukuoka, A., Kobayashi, H., Gao, M., Hasegawa, J.-y., Manabe, R., Shima, H., Tsutsuminai, S., Yokoi, T. (2020). Zeolite-supported ultra-small nickel as catalyst for selective oxidation of methane to syngas. Communications Chemistry, 3, 129. DOI: 10.1038/s42004-020-00375-0
  22. Melchiori, T., Di Felice, L., Mota, N., Navarro, R. M., Fierro, J. L. G., van Sint Annaland, M., Gallucci, F. (2014). Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst: Characterization, activity tests and kinetic modeling. Applied Catalysis A: General, 486, 239-249. DOI: 10.1016/j.apcata.2014.08.040
  23. Costa, D.S., Gomes, R.S., Rodella, C.B., da Silva Junior, R.B., Fréty, R., Neto, É.T., Brandão, S.T. (2020). Study of nickel, lanthanum and niobium-based catalysts applied in the partial oxidation of methane. Catalysis Today, 344, 15-23. DOI: 10.1016/j.cattod.2018.10.022
  24. Alvarez-Galvan, C., Melian, M., Ruiz-Matas, L., Eslava, J.L., Navarro, R.M., Ahmadi, M., Roldan, C.B., Fierro, J.L.G. (2019). Partial oxidation of methane to syngas over nickel-based catalysts: influence of support type, addition of rhodium, and preparation method. Frontiers in Chemistry, 7, 104. DOI: 10.3389/fchem.2019.00104
  25. Wang, F., Li, W.Z., Lin, J.D., Chen, Z.Q., Wang, Y. (2018). Crucial support effect on the durability of Pt/MgAl2O4 for partial oxidation of methane to syngas. Applied Catalysis B: Environmental, 231, 292-298. DOI: 10.1016/j.apcatb.2018.03.018
  26. Choya, A., de Rivas, B., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R. (2020). Oxidation of lean methane over cobalt catalysts supported on Ceria/Alumina, Applied Catalysis A: General, 591, 117381. DOI: 10.1016/j.apcata.2019.117381
  27. Hou, Y., Ogasawara, S., Fukuoka, A., Kobayashi, H. (2017). Technology, Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature selective oxidation of methane to syngas. Catalysis Science & Technology, 7 (24), 6132-6139. DOI: 10.1039/C7CY02183F
  28. Hou, Y., Nagamatsu, S., Asakura, K., Fukuoka, A., Kobayashi, H. (2018). Trace mono-atomically dispersed rhodium on zeolite-supported cobalt catalyst for the efficient methane oxidation. Communications Chemistry, 1(1), 1-7. DOI: 10.1038/s42004-018-0044-9
  29. Chen, J., Arandiyan, H., Gao, X., Li, J. (2015). Recent Advances in Catalysts for Methane Combustion. Catalysis Surveys from Asia, 19, 140-171. DOI: 10.1007/s10563-015-9191-5
  30. Zasada, F., Janas, J., Piskorz, W., Gorczyńska, M., Sojka, Z. (2017). Total Oxidation of Lean Methane over Cobalt Spinel Nanocubes Controlled by the Self-Adjusted Redox State of the Catalyst: Experimental and Theoretical Account for Interplay between the Langmuir–Hinshelwood and Mars–Van Krevelen Mechanisms. ACS Catalysis, 7, 2853-2867. DOI: 10.1021/acscatal.6b03139
  31. Munawar, M.A., Khoja, A.H., Hassan, M., Liaquat, R., Naqvi, S.R., Mehran, M.T., Abdullah, A., Saleem, F. (2021). Biomass ash characterization, fusion analysis and its application in catalytic decomposition of methane. Fuel, 285, 119107. DOI: 10.1016/j.fuel.2020.119107
  32. Khoja, A.H., Tahir, M., Amin, N.A.S. (2018). Cold plasma dielectric barrier discharge reactor for dry reforming of methane over Ni/ɤ-Al2O3-MgO nanocomposite. Fuel Processing Technology, 178, 166-179. DOI: 10.1016/j.fuproc.2018.05.030
  33. Wang, Q., Peng, Y., Fu, J., Kyzas, G.Z., Billah, S.M.R., An, S. (2015). Synthesis, characterization, and catalytic evaluation of Co3O4/γ-Al2O3 as methane combustion catalysts: Significance of Co species and the redox cycle. Applied Catalysis B: Environmental, 168-169, 42-50. DOI: 10.1016/j.apcatb.2014.12.016
  34. Grzybek, G., Ciura, K., Wójcik, S., Gryboś, J, Indyka, P., Inger, M., Antoniak-Jurak, K., Kowalik, P., Kotarba, A., Sojka, Z. (2017). On the selection of the best polymorph of Al2O3 carriers for supported cobalt nano-spinel catalysts for N2O abatement: an interplay between preferable surface spreading and damaging active phase–support interaction. Catalysis Science & Technology, 7, 5723-5732. DOI: 10.1039/C7CY01575E
  35. Bieseki, L., Penha, F.G., Pergher, S.B.C. (2013). Zeolite A synthesis employing a brazilian coal ash as the silicon and aluminum source and its applications in adsorption and pigment formulation. Materials Research, 16(1), 38-43. DOI: 10.1590/S1516-14392012005000144
  36. Iqbal, A., Sattar, H., Haider, R., Munir, S. (2019). Synthesis and characterization of pure phase zeolite 4A from coal fly ash. Journal of Cleaner Production, 219, 258-267. DOI: 10.1016/j.jclepro.2019.02.066
  37. Jamil, U., Khoja, A.H., Liaquat, R., Naqvi, S.R., Wan Omar, W.N.N., Amin, N.A.S. (2020). Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Conversion and Management, 215, 112934. DOI: 10.1016/j.enconman.2020.112934
  38. Ma, Y., Ma, Y., Chen, Y., Ma, S., Li, Q., Hu, X., Wang, Z., Buckley, C.E., Dong, D. (2020). Highly stable nanofibrous La2NiZrO6 catalysts for fast methane partial oxidation. Fuel, 265, 116861. DOI: 10.1016/j.fuel.2019.116861
  39. Hu, Y.H., Ruckenstein, E. (2004). Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming, Advances in Catalysis, 48, 297-345. DOI: 10.1016/j.apcata.2008.05.018
  40. Leroi, P., Madani, B., Pham-Huu, C., Ledoux, M.-J., Savin-Poncet, S., Bousquet, J.L. (2004). Ni/SiC: a stable and active catalyst for catalytic partial oxidation of methane. Catalysis Today, 91-92, 53-58. DOI: 10.1016/j.cattod.2004.03.009

Last update: 2021-10-14 19:47:36

No citation recorded.

Last update: 2021-10-14 19:47:37

No citation recorded.