skip to main content

Biocatalytic Reduction of Formaldehyde to Methanol: Effect of pH on Enzyme Immobilization and Reactive Membrane Performance

1Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

2Integrated Separation Technology Research Group (i-STRonG), Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

Received: 16 Mar 2021; Revised: 4 May 2021; Accepted: 5 May 2021; Published: 30 Sep 2021; Available online: 10 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Thermodynamic stabled CO2 molecules can be biocatalytically reduced to methanol via three cascade dehydrogenases (formate, formaldehyde and alcohol) with the aid of cofactor as the electron donor. In this study, Alcohol dehydrogenase (EC, the third step of the cascade enzymatic reaction which catalyzed formaldehyde (CHOH) to methanol (CH3OH) will be immobilized in an ultrafiltration membrane. The enzyme will be immobilized in the support layer of a poly(ether)sulfone (PES) membrane via a technique called fouling induced enzyme immobilization. The objective of this study is to evaluate the effect of varying pH (acid (pH 5), neutral (pH 7) and alkaline (pH 9)) of the feed solution during immobilization process of ADH in the membrane in terms of permeate flux, observed rejection, enzyme loading and fouling mechanism. The experiment was conducted in a pressure driven, dead-end stirred filtration cell. Reaction conversion and biocatalytic productivity will be also evaluated. The results showed that permeate flux for acid solution were the lowest during immobilization. High concentration polarization and fouling resistance cause lower observed rejection for pH 7 and 9. Enzyme loading for pH 5 give 73.8% loading rate which is the highest compared to 62.4% at pH 7 and 70.1% at pH 9. Meanwhile, the conversion rate during the reaction shows that reaction on fouled membrane showed more than 90% conversion for pH 5 and 7. The fouling model predicted that irreversible fouling occurs during enzyme immobilization at pH 7 with standard blocking mechanism while reversible fouling occurs at pH 5 and 9 with intermediate and complete blocking, respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Enzyme Membrane Reactor; Enzyme Immobilization; Membrane Fouling; Biocatalysis; CO2 Reduction; Reactive Separation
Funding: Ministry of Higher Education Malaysia, Fundamental Research Grant under contract FRGS/1/2018/TK10/UITM/03/7

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Myles, A., Babiker, M., Chen, Y., de Conink, H., Connors, S., van Diemen, R., Dube, O. P. (2018). IPCC, 2018: Summary for Policymakers. In V. Masson-Delmotte, H. Pörtner, J. Skea, P. Zhai, D. Roberts, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, G. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (Editors), Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change.
  2. Fischedick, M., Roy, J., Abdel-Aziz, A., A., A., Allwood, J. M., Ceron, J., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., Santalla, E., Sheinbaum, C., Tanaka, K. (2014). Industry. In T.Z. and J.C.M. Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow (Editors) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. DOI: 10.7312/beik90104-006
  3. Gale, J., Bradshaw, J., Chen, Z., Garg, Z., Gomez, D., Rogner, H., Simbeck, D., Willians, R., Toth, F., van Vuuren, D. (2018). Sources of CO2. In I. El Gizouli, J.F. Hake (Editors), IPCC Special Report on Carbon dioxide Capture and Storage. DOI: 10.1007/978-3-030-27103-9_8
  4. Yuan, Z., Eden, M. R., Gani, R. (2016). Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Industrial and Engineering Chemistry Research, 55(12), 3383–3419. DOI: 10.1021/acs.iecr.5b03277
  5. Tollefson, J. (2017). CO2 emissions set to spike in 2017. Nature, 551(7680), 283–283. DOI: 10.1038/nature.2017.22995
  6. Admiraal, A., Elzen, M.D., Roelfsema, M., Soest, H. (2015). Assessing Intended Nationally Determined Contributions to the Paris Climate Agreement. In PBL Netherlands Environmental Assessment Agency.
  7. Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization. Communications Chemistry, 4(1), 1–5. DOI: 10.1038/s42004-021-00461-x
  8. Cuéllar-Franca, R.M., Azapagic, A. (2015). Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 9, 82–102. DOI: 10.1016/j.jcou.2014.12.001
  9. Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Mac Dowell, N., Fernández, J.R., Ferrari, M.C., Gross, R., Hallett, J.P., Haszeldine, R.S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R.T.J., Pourkashanian, M., Rochelle, G.T., Shah, N., Yao, J.G., Fennell, P. S. (2014). Carbon capture and storage update. Energy and Environmental Science, 7(1), 130–189. DOI: 10.1039/c3ee42350f
  10. Xu, L., Xiu, Y., Liu, F., Liang, Y., Wang, S. (2020). Research progress in conversion of CO2 to valuable fuels. Molecules, 25(16), 3653. DOI: 10.3390/molecules25163653
  11. Zheng, Y., Zhang, W., Li, Y., Chen, J., Yu, B., Wang, J., Zhang, L., Zhang, J. (2017). Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 40, 512–539. DOI: 10.1016/j.nanoen.2017.08.049
  12. Marpani, F., Pinelo, M., Meyer, A.S. (2017). Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems. Biochemical Engineering Journal, 127, 217–228. DOI: 10.1016/j.bej.2017.08.011
  13. Obert, R., Dave, B.C. (1999). Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices. JACS - Journal of the American Chemical Society, 121(51), 12192–12193. DOI: 10.1021/ja991899r
  14. Ismail, F.H., Marpani, F., Othman, N.H., Nik Him, N.R. (2021). Simultaneous separation and biocatalytic conversion of formaldehyde to methanol in enzymatic membrane reactor. Chemical Engineering Communications, 208(5), 636–645. DOI: 10.1080/00986445.2019.1705795
  15. Luo, J., Marpani, F., Brites, R., Frederiksen, L., Meyer, A.S., Jonsson, G., Pinelo, M. (2014). Directing filtration to optimize enzyme immobilization in reactive membranes. Journal of Membrane Science, 459, 1–11. DOI: 10.1016/j.memsci.2014.01.065
  16. Schafer, A.I., Semiao, A.J.C. (2013). Removal of adsorbing estrogenic micropollutants by nanofiltration membranes. Part A - Experimental evidence. Journal of Membrane Science, 431, 244–256. DOI: 10.1016/j.memsci.2012.11.080
  17. Jochems, P., Satyawali, Y., Diels, L., Dejonghe, W. (2011). Enzyme immobilization on/in polymeric membranes: Status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chemistry, 13(7), 1609–1623. DOI: 10.1039/C1GC15178A
  18. Trzaskus, K.W., de Vos, W.M., Kemperman, A., Nijmeijer, K. (2015). Towards controlled fouling and rejection in dead-end microfiltration of nanoparticles - Role of electrostatic interactions. Journal of Membrane Science, 496, 174–184. DOI: 10.1016/j.memsci.2015.06.047
  19. She, Q., Tang, C.Y., Wang, Y.N., Zhang, Z. (2009). The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination, 249(3), 1079–1087. DOI: 10.1016/j.desal.2009.05.015
  20. Luo, J., Wan, Y. (2013). Effects of pH and salt on nanofiltration - a critical review. Journal of Membrane Science, 438, 18–28. DOI: 10.1016/j.memsci.2013.03.029
  21. Nyström, M., Zhu, H. (1997). Characterization of cleaning results using combined flux and streaming potential methods. Journal of Membrane Science, 131(1–2), 195–205. DOI: 10.1016/S0376-7388(97)00053-7
  22. Hadidi, M., Zydney, A.L. (2014). Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. Journal of Membrane Science, 452, 97–103. DOI: 10.1016/j.memsci.2013.09.062
  23. Van Voorthuizen, E.M., Ashbolt, N.J., Schäfer, A.I. (2001). Role of hydrophobic and electrostatic interactions for initial enteric virus retention by MF membranes. Journal of Membrane Science, 194, 69–79. DOI: 10.1016/S0376-7388(01)00522-1
  24. Marpani, F., Zulkifli, M.K., Ismail, F.H., Pauzi, S.M. (2019). Immobilization of alcohol dehydrogenase in membrane: Fouling mechanism at different transmembrane pressure. Journal of the Korean Chemical Society, 63(4), 260–265. DOI: 10.5012/jkcs.2019.63.4.260
  25. Khan, I.A., Lee, Y.S., Kim, J.O. (2020). A comparison of variations in blocking mechanisms of membrane-fouling models for estimating flux during water treatment. Chemosphere, 259, 127328. DOI: 10.1016/j.chemosphere.2020.127328
  26. Kirschner, A.Y., Cheng, Y.H., Paul, D.R., Field, R.W., Freeman, B.D. (2019). Fouling mechanisms in constant flux crossflow ultrafiltration. Journal of Membrane Science, 574, 65–75. DOI: 10.1016/j.memsci.2018.12.001
  27. Chang, E.E., Yang, S.Y., Huang, C.P., Liang, C.H., Chiang, P.C. (2011). Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model. Separation and Purification Technology. 79(3), 329–336. DOI: 10.1016/j.seppur.2011.03.017
  28. Marpani, F., Luo, J., Mateiu, R.V., Meyer, A.S., Pinelo, M. (2015). In situ formation of a biocatalytic alginate membrane by enhanced concentration polarization. ACS Applied Materials and Interfaces, 7(32), 17682–17691. DOI: 10.1021/acsami.5b05529

Last update: 2021-10-14 22:34:15

No citation recorded.

Last update: 2021-10-14 22:34:15

No citation recorded.