skip to main content

Catalytic Performance of Calcium-Lanthanum co-doped Ceria (Ce0.85-xLa0.15CaxO2-δ) in Partial Oxidation of Methane

1Department of Energy Systems Engineering, U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), H-12 Sector (44000) Islamabad, Pakistan

2Department of Energy Systems Engineering, United States-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Islamabad, Pakistan

3Fossil Fuel Laboratory, Department of Thermal Energy Engineering, U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), H-12 Sector (44000) Islamabad, Pakistan

4 Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia

View all affiliations
Received: 3 Mar 2021; Revised: 16 May 2021; Accepted: 17 May 2021; Published: 30 Sep 2021; Available online: 28 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this study, Ce0.85-xLa0.15CaxO2-δ was synthesized using sol-gel combustion method and appliedfor partial oxidation of methane (POM). The physicochemical properties of catalyst were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). Material shows a pure cubical structure and is highly stable up to 850 °C. The performance testing indicated the conversion of CH4 is 65% and selectivity of H2 and CO are 28% and 8%, respectively. The performance indicated the catalyst has a potential to be used for partial oxidation of methane on a larger scale. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: partial oxidation of methane; POM; hydrogen production; Ce0.85-xLa0.15CaxO2-δ
Funding: Ministry of Higher Education Malaysia via the Transdisciplinary Research Grant Scheme under contract TRGS/1/2019/UKM/01/1/1

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
Statistics:
Share:
  1. Ma, Y., Harding, J.D., Tu, X. (2019). Catalyst-free low temperature conversion of n-dodecane for co-generation of COx-free hydrogen and C2 hydrocarbons using a gliding arc plasma. International Journal of Hydrogen Energy, 44(48), 26158–26168. DOI: 10.1016/j.ijhydene.2019.08.067
  2. Anantharaj, S., Noda, S. (2020). Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Small, 16 (2), 1905779. DOI: 10.1002/smll.201905779
  3. Amin, A.M., Croiset, E., Epling, W. (2011). Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 36 (4), 2904–2935. DOI: 10.1016/j.ijhydene.2010.11.035
  4. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
  5. Shine, K.P., Fuglestvedt, J.S., Hailemariam, K., Stuber, N. (2005). Alternatives to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68, 281–302. DOI: 10.1007/s10584-005-1146-9
  6. Abanades, S., Kimura, H., Otsuka, H. (2014). Hydrogen production from thermo-catalytic decomposition of methane using carbon black catalysts in an indirectly-irradiated tubular packed-bed solar reactor. International Journal of Hydrogen Energy, 39(33), 18770–18783. DOI: 10.1016/j.ijhydene.2014.09.058
  7. Abbas, H.F., Daud, W.M.A.W. (2010). Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, 35(3), 1160–1190. DOI: 10.1016/j.ijhydene.2009.11.036
  8. Figen, H.E., Baykara, S.Z. (2015). Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts. International Journal of Hydrogen Energy, 40(24), 7439–7451. DOI: 10.1016/j.ijhydene.2015.02.109
  9. Hafizi, A., Rahimpour, M.R., Hassanajili, Sh. (2015). Calcium promoted Fe/Al2O3 oxygen carrier for hydrogen production via cyclic chemical looping steam methane reforming process. International Journal of Hydrogen Energy, 40(46), 16159–16168. DOI: 10.1016/j.ijhydene.2015.10.021
  10. Abushammala, M.F.M., Basri, N.E.A., Irwan, D., Younes, M.K. (2014). Methane Oxidation in Landfill Cover Soils: A Review. Asian Journal of Atmospheric Environment, 8(1), 1–14. DOI: 10.5572/ajae.2014.8.1.001
  11. Silva, R.R.C.M., Oliveira, H.A., Guarino, A.C.P.F., Toledo, B.B., Moura, M.B.T., Oliveira, B.T.M., Passos, F.B. (2016). Effect of support on methane decomposition for hydrogen production over cobalt catalysts. International Journal of Hydrogen Energy, 41(16), 6763–6772. DOI: 10.1016/j.ijhydene.2016.02.101
  12. Pudukudy, M., Kadier, A., Yaakob, Z., Takriff, M.S. (2016). Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts. International Journal of Hydrogen Energy, 41(41), 18509–18521. DOI: 10.1016/j.ijhydene.2016.08.160
  13. Shamsuddin, M.R., Asikin-Mijan, N., Marliza, T.S., Miyamoto, M., Uemiya, S., Yarmo, M.A., Taufiq-Yap, Y.H. (2021). Promoting dry reforming of methane via bifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas. RSC Advances, 11(12), 6667–6681.DOI: 10.1039/D0RA09246K
  14. Jais, A.A., Somalu, M.R., Muchtar, A., Isahak, W.N.R.W. (2019). Carbon Deposition Properties of Ni0.5M0.5/10Sc1CeSZ (M = Cu, Co and Fe) Cermet Anode for Dry Reforming Methane-Fuelled Solid Oxide Fuel Cells. IOP Conference Series: Earth and Environmental Science, 268, 012138. DOI: 10.1088/1755-1315/268/1/012138
  15. Pudukudy, M., Yaakob, Z., Akmal, Z.S. (2015). Direct decomposition of methane over Pd promoted Ni/SBA-15 catalysts. Applied Surface Science, 353, 127–136. DOI: 10.1016/j.apsusc.2015.06.073
  16. Fakeeha, A., Ibrahim, A.A., Aljuraywi, H., Alqahtani, Y., Alkhodair, A., Alswaidan, S., Abasaeed, A.E., Kasim, S.O., Mahmud, S., Al-Fatesh, A.S. (2020). Hydrogen production by partial oxidation reforming of methane over Ni catalysts supported on high and low surface area Alumina and Zirconia. Processes, 8(5), 499.DOI: 10.3390/PR8050499
  17. Kaddeche, D., Djaidja, A., Barama, A. (2017). Partial oxidation of methane on co-precipitated Ni–Mg/Al catalysts modified with copper or iron. International Journal of Hydrogen Energy, 42(22), 15002–15009. DOI: 10.1016/j.ijhydene.2017.04.281
  18. Lucrédio, A.F., Jerkiewickz, G., Assaf, E.M. (2007). Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions. Applied Catalysis A: General, 333(1), 90–95. DOI: 10.1016/j.apcata.2007.09.009
  19. Lucrédio, A.F., Jerkiewicz, G., Assaf, E.M. (2008). Cobalt catalysts promoted with cerium and lanthanum applied to partial oxidation of methane reactions. Applied Catalysis B: Environmental, 84(1–2), 106–111. DOI: 10.1016/j.apcatb.2008.03.008
  20. Peymani, M., Alavi, S.M., Rezaei, M. (2016). Preparation of highly active and stable nanostructured Ni/CeO2 catalysts for syngas production by partial oxidation of methane. International Journal of Hydrogen Energy, 41(15), 6316–6325. DOI: 10.1016/j.ijhydene.2016.03.033
  21. Zhao, K., Du, Y. (2017). Calcium-doped ceria materials for anode of solid oxide fuel cells running on methane fuel. Journal of Power Sources, 347, 79–85. DOI: 10.1016/j.jpowsour.2017.01.113
  22. Ali, S.A.M., Anwar, M., Somalu, M.R., Muchtar, A. (2017). Enhancement of the interfacial polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode by microwave-assisted combustion method. Ceramics International, 43(5), 4647–4654. DOI: 10.1016/j.ceramint.2016.12.136
  23. Munawar, M.A., Khoja, A.H., Hassan, M., Liaquat, R., Naqvi, S.R., Mehran, M.T., Abdullah, A., Saleem, F. (2021). Biomass ash characterization, fusion analysis and its application in catalytic decomposition of methane. Fuel, 285, 119107. DOI: 10.1016/j.fuel.2020.119107
  24. Amin, A.M., Croiset, E., Constantinou, C., Epling, W. (2012). Methane cracking using Ni supported on porous and non-porous alumina catalysts. International Journal of Hydrogen Energy, 37(11), 9038–9048. DOI: 10.1016/j.ijhydene.2012.02.001
  25. Pudukudy, M., Yaakob, Z., Takriff, M.S. (2016). Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method. Energy Conversion and Management, 126, 302–315. DOI: 10.1016/j.enconman.2016.08.006

Last update:

No citation recorded.

Last update:

No citation recorded.