skip to main content

Challenges & Opportunities on Catalytic Conversion of Glycerol to Value Added Chemicals

1Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Malaysia

2School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

3Department of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia

Received: 23 Mar 2021; Revised: 14 May 2021; Accepted: 14 May 2021; Published: 30 Sep 2021; Available online: 28 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

With the rapid expansion of biodiesel industry, its main by-product, crude glycerol, is anticipated to reach a global production of 6 million tons in 2025. It is actually a worrying phenomenon as glycerol could potentially emerge as an excessive product with little value. Glycerol, an alcohol and oxygenated chemical from biodiesel production, has essentially enormous potential to be converted into higher value-added chemicals. Using glycerol as a starting material for value-added chemical production will create a new demand on the glycerol market such as lactic acid, propylene glycol, alkyl lactatehydrogen, olefins and others. This paper briefly reviews the recent development on value-added chemicals derived from glycerol through catalytic conversion of refined and crude glycerol that have been proven to be promising in research stage with commercialization potential, or have been put in a corporate marketable production. Despite of the huge potential of products that can be transformed from glycerol, there are still numerous challenges to be addressed and discussed that include catalyst design and robustness; focus on crude or refined glycerol; reactor technology, reaction mechanism and thermodynamic analysis; and overall process commercial viability. The discussion will hopefully provide new insights on justified direction to focus on for glycerol transformation technology. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: glycerol; catalytic transformation; value added chemicals; biodiesel
Funding: Universiti Teknologi Malaysia under contract Collaborative Research Grant (4B485); Ministry of Higher Education Malaysia (MOHE) under contract Fundamental Research Grant Scheme (FRGS/1/2020/TK0/UTM/02/97)

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
  1. Luo, X., Ge, X., Cui, S., Li, Y. (2016). Value-added processing of crude glycerol into chemicals and polymers. Bioresource Technology, 215, 144-154. DOI: 10.1016/j.biortech.2016.03.042
  2. Bagheri, S., Julkapli, N.M., Yehye, W.A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127. DOI: 10.1016/j.rser.2014.08.031
  3. Veluturla, S., Archna, N., Subba Rao, D., Hezil, N., Indraja, I.S., Spoorthi, S. (2018). Catalytic valorization of raw glycerol derived from biodiesel: a review. Biofuels, 9(3), 305-314. DOI: 10.1080/17597269.2016.1266234
  4. Muraza, O. (2019). Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry, 7, 233-233. DOI: 10.3389/fchem.2019.00233
  5. Paillet, F., Marone, A., Moscoviz, R., Steyer, J.-P., Tapia-Venegas, E., Bernet, N., Trably, E. (2019). Improvement of biohydrogen production from glycerol in micro-oxidative environment. International Journal of Hydrogen Energy, 44(33), 17802-17812. DOI: 10.1016/j.ijhydene.2019.05.082
  6. Abdul Ghani, A., Torabi, F., Ibrahim, H. (2018). Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses. Energy, 144, 129-145. DOI: 10.1016/
  7. Possato, L.G., Chaves, T.F., Cassinelli, W.H., Pulcinelli, S.H., Santilli, C.V., Martins, L. (2017). The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, 289, 20-28. DOI: 10.1016/j.cattod.2016.08.005
  8. Freitas, I.C., Manfro, R.L., Souza, M.M.V.M. (2018). Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental, 220, 31-41. DOI: 10.1016/j.apcatb.2017.08.030
  9. Ning, X., Li, Y., Yu, H., Peng, F., Wang, H., Yang, Y. (2016). Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. Journal of Catalysis, 335, 95-104. DOI: 10.1016/j.jcat.2015.12.020
  10. Marimuthu, M., Marimuthu, P., S.K., A.K., Palanivelu, S., Rajagopalan, V. (2018). Tuning the basicity of Cu-based mixed oxide catalysts towards the efficient conversion of glycerol to glycerol carbonate. Molecular Catalysis, 460, 53-62. DOI: 10.1016/j.mcat.2018.09.002
  11. Kong, P.S., Aroua, M.K., Daud, W.M.A.W. (2016). Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, 63, 533-555. DOI: 10.1016/j.rser.2016.05.054
  12. Nandiwale, K.Y., Patil, S.E., Bokade, V.V. (2014). Glycerol Etherification using n-Butanol to Produce Oxygenated Additives for Biodiesel Fuel over H-Beta Zeolite Catalysts. Energy Technology, 2(5), 446-452. DOI: 10.1002/ente.201300169
  13. Zakaria, Z.Y., Amin, N.A.S., Linnekoski, J. Optimization of catalytic glycerol steam reforming to light olefins using Cu/ZSM-5 catalyst. Energy Conversion and Management, 86, 735-744. DOI: 10.1016/j.enconman.2014.06.040
  14. Quispe, C.A.G., Coronado, C.J.R., Carvalho Jr, J.A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493. DOI: 10.1016/j.rser.2013.06.017
  15. Yeong, S.K., Idris, Z., Hassan, H.A. (2012). 20 - Palm Oleochemicals in Non-food Applications. In O.-M. Lai, C.-P. Tan, C.C. Akoh (Editors), Palm Oil, AOCS Press. p. 587-624
  16. Tan, H.W., Abdul Aziz, A.R., Aroua, M.K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127 DOI: 10.1016/j.rser.2013.06.035
  17. Ganigué, R., Naert, P., Candry, P., de Smedt, J., Stevens, C.V., Rabaey, K. (2019). Fruity flavors from waste: A novel process to upgrade crude glycerol to ethyl valerate. Bioresource Technology, 289, 121574. DOI: 10.1016/j.biortech.2019.121574
  18. Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90(12), 1502-1514. DOI: 10.1016/j.fuproc.2009.07.016
  19. Zakaria, Z.Y., Amin, N.A.S., Linnekoski, J. (2013). A perspective on catalytic conversion of glycerol to olefins. Biomass and Bioenergy, 55, 370-385. DOI: 10.1016/j.biombioe.2013.02.014
  20. Ciriminna, R., Della Pina, C., Rossi, M., Pagliaro, M. (2014). Understanding the Glycerol Market. European Journal of Lipid Science and Technology, 116(10), 1432-1439. DOI: 10.1002/ejlt.201400229
  21. Kosamia, N.M., Samavi, M., Uprety, B.K., Rakshit, S.K. (2020). Valorization of Biodiesel Byproduct Crude Glycerol for the Production of Bioenergy and Biochemicals. Catalysts, 10(6), 609. DOI: 10.3390/catal10060609
  22. Monteiro, M.R., Kugelmeier, C.L., Pinheiro, R.S., Batalha, M.O., da Silva César, A. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109-122. DOI: 10.1016/j.rser.2018.02.019
  23. Sarma, S.J., Brar, S.K., Sydney, E.B., Le Bihan, Y., Buelna, G., Soccol, C.R. (2012). Microbial hydrogen production by bioconversion of crude glycerol: A review. International Journal of Hydrogen Energy, 37(8), 6473-6490. DOI: 10.1016/j.ijhydene.2012.01.050
  24. Ho Jin, Y., Lee, T., Kim, J.R., Choi, Y.-E., Park, C. (2019). Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. Journal of Industrial and Engineering Chemistry, 75, 158-163. DOI: 10.1016/j.jiec.2019.03.017
  25. Iyyappan, J., Bharathiraja, B., Baskar, G., Kamalanaban, E. (2019). Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. Bioresource Technology, 281, 18-25. DOI: 10.1016/j.biortech.2019.02.067
  26. de Paula, F.C., Kakazu, S., de Paula, C.B.C., Gomez, J.G.C., Contiero, J. (2017). Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp. Journal of King Saud University - Science, 29(2), 166-173. DOI: 10.1016/j.jksus.2016.07.002
  27. Mangayil, R., Efimova, E., Konttinen, J., Santala, V. (2019). Co-production of 1,3 propanediol and long-chain alkyl esters from crude glycerol. New Biotechnology, 53, 81-89. DOI: 10.1016/j.nbt.2019.07.003
  28. Badia-Fabregat, M., Rago, L., Baeza, J.A., Guisasola, A. (2019). Hydrogen production from crude glycerol in an alkaline microbial electrolysis cell. International Journal of Hydrogen Energy, 44(32), 17204-17213. DOI: 10.1016/j.ijhydene.2019.03.193
  29. Kumar, P., Ray, S., Patel, S.K.S., Lee, J.-K., Kalia, V.C. (2015). Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. International Journal of Biological Macromolecules, 78, 9-16. DOI: 10.1016/j.ijbiomac.2015.03.046
  30. Fordham, P., Besson, M., Gallezot, P. (1997). Catalytic oxidation with air of tartronic acid to mesoxalic acid on bismuth-promoted platinum. Catalysis Letters, 46(3-4), 195-199. DOI: 10.1023/A:1019082905366
  31. Fordham, P., Garcia, R., Besson, M., Gallezot, P. (1996). Selective catalytic oxidation with air of glycerol and oxygenated derivatives on platinum metals. In J.W. Hightower, W.N. Delgass, E. Iglesia, A.T. Bell (Editors) Studies in Surface Science and Catalysis, Elsevier. p. 161-170
  32. Fordham, P., Besson, M., Gallezot, P. (1995). Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Applied Catalysis A: General, 133(2), L179-L184. DOI: 10.1016/0926-860X(95)00254-5
  33. Abbadi, A., van Bekkum, H. (1996). Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid. Applied Catalysis A: General, 148(1), 113-122. DOI: 10.1016/S0926-860X(96)00229-3
  34. Abro, S., Pouilloux, Y., Barrault, J. (1997). Selective synthesis of monoglycerides from glycerol and oleic acid in the presence of solid catalysts. In H.U. Blaser, A. Baiker, R. Prins, (Editors) Studies in Surface Science and Catalysis. Elsevier. p. 539-546
  35. Vieville, C., Yoo, J.W., Pelet, S., Mouloungui, Z. (1998). Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catalysis Letters, 56(4), 245-247. DOI: 10.1023/A%3A1019050205502
  36. Qing, Y., Lu, H., Liu, Y., Liu, C., Liang, B., Jiang, W. (2018). Production of glycerol carbonate using crude glycerol from biodiesel production with DBU as a catalyst. Chinese Journal of Chemical Engineering, 26(9), 1912-1919. DOI: 10.1016/j.cjche.2018.01.010
  37. Sonnati, M.O., Amigoni, S., Taffin de Givenchy, E.P., Darmanin, T., Choulet, O., Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15(2), 283-306. DOI: 10.1039/C2GC36525A
  38. Carrettin, S., McMorn, P., Johnston, P., Griffin, K., Hutchings, G.J. (2002). Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chemical Communications, 2002(7), 696-697. DOI: 10.1039/B201112N
  39. Teng, W.K., Ngoh, G.C., Yusoff, R., Aroua, M.K. (2016). Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chemical Engineering Journal, 284, 469-477. DOI: 10.1016/j.cej.2015.08.108
  40. Mahdi, H.I., Irawan, E., Nuryoto, N., Jayanudin, J., Sulistyo, H., Sediawan, W.B., Muraza, O. (2016). Glycerol carbonate production from biodiesel waste over modified natural clinoptilolite. Waste and Biomass Valorization, 7(6), 1349-1356. DOI: 10.1007/s12649-016-9495-3
  41. Liu, J., Li, Y., Liu, H., He, D. (2019). Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts. Applied Catalysis B: Environmental, 244, 836-843. DOI: 10.1016/j.apcatb.2018.12.018
  42. Hoang, T.Q., Zhu, X., Danuthai, T., Lobban, L.L., Resasco, D.E., Mallinson, R.G. (2010). Conversion of Glycerol to Alkyl-aromatics over Zeolites. Energy & Fuels, 24(7), 3804-3809. DOI: 10.1021/ef100160y
  43. Weyda, H., Köhler, E. (2003). 8 Modern refining concepts-an update on naphtha-isomerization to modern gasoline manufacture. In M. Anpo, M. Onaka, H. Yamashita (Editors) Studies in Surface Science and Catalysis. Elsevier. p. 61-66
  44. Al-Kinany, M.C., Al-Khowaiter, S.H., Al-Malki, F.H. (2001). Synthesis of Cumene (Isopropylbenzene) from Diisopropylbenzenes in the presence of Benzene using Triflic acid as catalyst at room temperature. In G.F. Froment, K.C. Waugh (Editors) Studies in Surface Science and Catalysis, Elsevier. p. 459-464
  45. Ghosh, P., Hickey, K.J., Jaffe, S.B. (2006). Development of a Detailed Gasoline Composition-Based Octane Model. Industrial & Engineering Chemistry Research, 45(1), 337-345. DOI: 10.1021/ie050811h
  46. Niziolek, A.M., Onel, O., Guzman, Y.A., Floudas, C.A. (2016) Biomass-Based Production of Benzene, Toluene, and Xylenes via Methanol: Process Synthesis and Deterministic Global Optimization. Energy & Fuels, 30(6), 4970–4998. DOI: 10.1021/acs.energyfuels.6b00619
  47. Tarasov, A.L. (2018). Catalytic Conversion of Glycerol into Aromatic Hydrocarbons, Acrolein, and Glycerol Ethers on Zeolite Catalysts. Russian Journal of Physical Chemistry A, 92, 2451-2454. DOI: 10.1134/S0036024418120397
  48. Wang, F., Xiao, W., Gao, L., Xiao, G. (2016). Enhanced performance of glycerol to aromatics over Sn-containing HZSM-5 zeolites. RSC Advances, 6(49), 42984-42993. DOI: 10.1039/C6RA03358J
  49. Wang, F., Chu, X., Zhu, F., Wu, F., Li, Q., Liu, B., Xiao, G. (2019). Producing BTX aromatics-enriched oil from biomass derived glycerol using dealuminated HZSM-5 by successive steaming and acid leaching as catalyst: Reactivity, acidity and product distribution. Microporous and Mesoporous Materials, 277, 286-294. DOI: 10.1016/j.micromeso.2018.11.015
  50. Wang, F., Zhou, M.-x., Yang, X.-h., Gao, L.-j., Xiao, G.-m. (2017). The effect of hierarchical pore architecture on one-step catalytic aromatization of glycerol: Reaction routes and catalytic performances. Molecular Catalysis, 432, 144-154. DOI: 10.1016/j.mcat.2017.01.017
  51. Yang, X., Wang, F., Wei, R., Li, S., Wu, Y., Shen, P., Wang, H., Gao, L., Xiao, G. (2018). Synergy effect between hierarchical structured and Sn-modified H[Sn,Al]ZSM-5 zeolites on the catalysts for glycerol aromatization. Microporous and Mesoporous Materials, 257, 154-161. DOI: 10.1016/j.micromeso.2017.08.039
  52. He, S., Muizebelt, I., Heeres, A., Schenk, N.J., Blees, R., Heeres, H.J. (2018). Catalytic pyrolysis of crude glycerol over shaped ZSM-5/bentonite catalysts for bio-BTX synthesis. Applied Catalysis B: Environmental, 235, 45-55. DOI: 10.1016/j.apcatb.2018.04.047
  53. Murata, K., Takahara, I., Inaba, M. (2008). Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts. Reaction Kinetics and Catalysis Letters, 93(1), 59-66. DOI: 10.1007/s11144-008-5190-0
  54. Zakaria, Z.Y., Linnekoski, J., Amin, N.A.S. (2012). Catalyst screening for conversion of glycerol to light olefins. Chemical Engineering Journal, 207–208, 803-813. DOI: 10.1016/j.cej.2012.07.072
  55. Wu, Z., Yan, H., Ge, S., Gao, J., Dou, T., Li, Y., Yip, A.C.K., Zhang, M. (2017). MoO3 modified Ni2P/Al2O3 as an efficient catalyst for crude glycerol to propylene. Catalysis Communications, 92, 80-85. DOI: 10.1016/j.catcom.2017.01.009
  56. Mandal, S., Mandal, S., Ghosh, S.K., Sar, P., Ghosh, A., Saha, R., Saha, (2016). A review on the advancement of ether synthesis from organic solvent to water. RSC Advances, 6(73), 69605-69614. DOI: 10.1039/C6RA12914E
  57. Roze, M., Kampars, V., Teivena, K., Kampare, R., Liepins, E. (2013). Catalytic Etherification of Glycerol with Alcohols. Material Science and Applied Chemistry, 28, 67. DOI: 10.7250/msac.2013.011
  58. Gonzalez-Arellano, C., Grau-Atienza, A., Serrano, E., Romero, A.A., Garcia-Martinez, J., Luque, R. (2015). The role of mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. Journal of Molecular Catalysis A: Chemical, 406, 40-45. DOI: 10.1016/j.molcata.2015.05.011
  59. Kowalska-Kus, J., Held, A., Frankowski, M., Nowinska, K. (2017). Solketal formation from glycerol and acetone over hierarchical zeolites of different structure as catalysts. Journal of Molecular Catalysis A: Chemical, 426, 205-212. DOI: 10.1016/j.molcata.2016.11.018
  60. Bivona, L.A., Vivian, A., Fusaro, L., Fiorilli, S., Aprile, C. (2019). Design and catalytic applications of 1D tubular nanostructures: Improving efficiency in glycerol conversion. Applied Catalysis B: Environmental, 247, 182-190. DOI: 10.1016/j.apcatb.2019.01.085
  61. Manjunathan, P., Maradur, S.P., Halgeri, A.B., Shanbhag, G.V. (2015). Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A: Chemical, 396, 47-54. DOI: 10.1016/j.molcata.2014.09.028
  62. López, A., Aragón, J.A., Hernández-Cortez, J.G., Mosqueira, M.L., Martínez-Palou, R. (2019). Study of hydrotalcite-supported transition metals as catalysts for crude glycerol hydrogenolysis. Molecular Catalysis, 468, 9-18. DOI: 10.1016/j.mcat.2019.02.008
  63. Veiga, S., Bussi, J. (2017). Steam reforming of crude glycerol over nickel supported on activated carbon. Energy Conversion and Management, 141, 79-84. DOI: 10.1016/j.enconman.2016.04.103
  64. Veiga, S., Faccio, R., Segobia, D., Apesteguía, C., Bussi, J. (2017). Hydrogen production by crude glycerol steam reforming over Ni–La–Ti mixed oxide catalysts. International Journal of Hydrogen Energy, 42(52), 30525-30534. DOI: 10.1016/j.ijhydene.2017.10.118
  65. Ribao, P., Alexandra Esteves, M., Fernandes, V.R., Rivero, M.J., Rangel, C.M., Ortiz, I. (2018). Challenges arising from the use of TiO2/rGO/Pt photocatalysts to produce hydrogen from crude glycerol compared to synthetic glycerol. International Journal of Hydrogen Energy, 44(53), 28494-28506. DOI: 10.1016/j.ijhydene.2018.09.148
  66. Hu, S., Li, Y. (2014). Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: Effects of crude glycerol impurities. Industrial Crops and Products, 57, 188-194. DOI: 10.1016/j.indcrop.2014.03.032
  67. Analyst, P.I. (2009). Linde Group develops sustainable hydrogen production process. Pump Industry Analyst, 2009(5), 2. DOI: 10.1016/S1359-6128(09)70172-7
  68. Voegele, E. (2012). Linde's glycerin-based hydrogen achieves certification. In Biodiesel Magazine. BBI International
  69. (2019). Epichlorohydrin production. Available from:
  70. Nomanbhay, S., Hussein, R., Ong, M.Y. (2018). Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review. Green Chemistry Letters and Reviews, 11(2), 135-157. DOI: 10.1080/17518253.2018.1444795
  71. Almeida, A., Ribeiro, A., Ramalho, E., Pilão, R. (2018). Crude glycerol gasification in a fixed bed gasifier. Energy Procedia, 153, 149-153. DOI: 10.1016/j.egypro.2018.10.060
  72. Tamošiūnas, A., Gimžauskaitė, D., Uscila, R., Aikas, M. (2019). Thermal arc plasma gasification of waste glycerol to syngas. Applied Energy, 251, 113306. DOI: 10.1016/j.apenergy.2019.113306
  73. Manara, P., Zabaniotou, A. (2013). Co-pyrolysis of biodiesel-derived glycerol with Greek lignite: A laboratory study. Journal of Analytical and Applied Pyrolysis, 100, 166-172. DOI: 10.1016/j.jaap.2012.12.013
  74. Ganesapillai, M., Manara, P., Zabaniotou, A. (2016). Effect of microwave pretreatment on pyrolysis of crude glycerol–olive kernel alternative fuels. Energy Conversion and Management, 110, 287-295. DOI: 10.1016/j.enconman.2015.12.045
  75. Ye, X.P., Ren, S. (2014). Value-Added Chemicals from Glycerol. In Soy-Based Chemicals and Materials. American Chemical Society. p. 43-80
  76. Wang, Y., Xiao, Y., Xiao, G. (2019). Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes. Chinese Journal of Chemical Engineering, 27(7), 1536-1542. DOI: 10.1016/j.cjche.2019.03.001
  77. Corma, A., Huber, G.W., Sauvanaud, L., O'Connor, P. (2008). Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. Journal of Catalysis, 257(1), 163-171. DOI: 10.1016/j.jcat.2008.04.016
  78. Zaidi, H.A., Pant, K.K. (2005). Catalytic activity of copper oxide impregnated HZSM-5 in methanol conversion to liquid hydrocarbons. Canadian Journal of Chemical Engineering, 83(6), 970-977. 10.1002/cjce.5450830606
  79. Pompeo, F., Santori, G., Nichio, N.N. (2010). Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. International Journal of Hydrogen Energy, 35(17), 8912-8920. DOI: 10.1016/j.ijhydene.2010.06.011
  80. Calleja, G., Botas, J.A., Sánchez-Sánchez, M., Orcajo, M.G. (2010). Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange. International Journal of Hydrogen Energy, 35(18), 9916-9923. DOI: 10.1016/j.ijhydene.2010.02.114
  81. Zakaria, Z.Y., Jusoh, M., Johari, A., Abdullah, T.A.T., Hassim, M.H., Kidam, K., Kamaruddin, M.J., Sulaiman, W.R.W. (2015). Thermodynamic Analysis of Hydrogen Production from Ethanol-glycerol Mixture through Steam and Dry Reforming. Procedia Manufacturing, 2, 92-96. DOI: 10.1016/j.promfg.2015.07.016
  82. Jusoh, M., Yahya, N., Farhana, N., Zakaria, Z.Y. (2016). Thermodynamic Analysis of Glycerol Dry Reforming to Hydrogen at Low Pressure. In Conference Proceedings Fourth International Conference on Advances in Bio-Informatics, Bio-Technology and Environmental Engineering - ABBE 2016, 37-41. Birmingham City University (City North Campus), Perry Barr, Birmingham B42 2SU, UK. DOI: 10.15224/978-1-63248-091-0-09
  83. Zakaria, Z.Y., Amin, N.A.S., Linnekoski, J. (2014). Thermodynamic Analysis of Glycerol Conversion to Olefins. Energy Procedia, 61, 2489-2492. DOI: 10.1016/j.egypro.2014.12.029
  84. Ali, O.M., Mamat, R., Rasul, M.G., Najafi, G. (2017). Chapter Eighteen - Potential of Biodiesel as Fuel for Diesel Engine. In M.G. Rasul, A.k. Azad, S.C. Sharma (Editors) Clean Energy for Sustainable Development. Academic Press. p. 557-590
  85. Swaminathan, M. (2018). Chapter 10 - Semiconductor Oxide Nanomaterials as Catalysts for Multiple Applications. In C. Mustansar Hussain (Editor) Handbook of Nanomaterials for Industrial Applications. Elsevier. p. 197-207
  86. Bruemmer, M. (1999). PTFE-lined equipment (columns and vessels) for the chemical process industry. Advantages/disadvantages of paste-extruded PTFE. In Corrosion 1999 conference. San Antonio, TX (United States)
  87. Galadima, A., Muraza, O. (2016). A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, 67, 29-44. DOI: 10.1016/j.jtice.2016.07.019
  88. Adhikari, S., Fernando, S., Gwaltney, S.R., Filip To, S.D., Bricka, R.M., Steele, P.H., Haryanto, A. (2007). A thermodynamic analysis of hydrogen production by steam reforming of glycerol. International Journal of Hydrogen Energy, 32(14), 2875-2880. DOI: 10.1016/j.ijhydene.2007.03.023
  89. Cheng, C.K., Foo, S.Y., Adesina, A.A. (2012). Thermodynamic analysis of glycerol-steam reforming in the presence of CO2 or H2 as carbon gasifying agent. International Journal of Hydrogen Energy, 37(13), 10101-10110. DOI: 10.1016/j.ijhydene.2012.04.005
  90. Kale, G.R., Kulkarni, B.D. (2010). Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Processing Technology, 91(5), 520-530. DOI: 10.1016/j.fuproc.2009.12.015
  91. Alvarado, F.D., Gracia, F. (2012). Oxidative steam reforming of glycerol for hydrogen production: Thermodynamic analysis including different carbon deposits representation and CO2 adsorption. International Journal of Hydrogen Energy, 37(19), 14820-14830. DOI: 10.1016/j.ijhydene.2012.01.158
  92. Aghbashlo, M., Hosseinpour, S., Tabatabaei, M., Rastegari, H., Ghaziaskar, H.S. (2019). Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent. Renewable Energy, 130, 735-748. DOI: 10.1016/j.renene.2018.06.103
  93. Maglinao, R.L., He, B.B. (2011). Catalytic Thermochemical Conversion of Glycerol to Simple and Polyhydric Alcohols Using Raney Nickel Catalyst. Industrial & Engineering Chemistry Research, 50(10), 6028-6033. DOI: 10.1021/ie102573m
  94. Checa, M., Nogales-Delgado, S., Montes, V., Encinar, J.M. (2020). Recent Advances in Glycerol Catalytic Valorization: A Review. Catalysts, 10(11), 1279. DOI: 10.3390/catal10111279
  95. Liu, J., Jiang, Y., Zhang, P., Yang, B. (2021). Enhance glycerol conversion through co-etherification with isobutene and tert-butanol. Fuel Processing Technology, 218, 106838. DOI: 10.1016/j.fuproc.2021.106838
  96. Imbault, A.L., Gong, J., Farnood, R. (2020). Photocatalytic production of dihydroxyacetone from glycerol on TiO2 in acetonitrile. RSC Advances, 10(9), 4956-4968. DOI: 10.1039/C9RA09434B
  97. Kostyniuk, A., Bajec, D., Djinović, P., Likozar, B. (2020). Allyl alcohol production by gas phase conversion reactions of glycerol over bifunctional hierarchical zeolite-supported bi- and tri-metallic catalysts. Chemical Engineering Journal, 397, 125430. DOI: 10.1016/j.cej.2020.125430
  98. Talebian-Kiakalaieh, A., Tarighi, S. (2019). Hierarchical faujasite zeolite-supported heteropoly acid catalyst for acetalization of crude-glycerol to fuel additives. Journal of Industrial and Engineering Chemistry, 79, 452-464. DOI: 10.1016/j.jiec.2019.07.021
  99. Dou, B., Song, Y., Wang, C., Chen, H., Xu, Y. (2014). Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renewable and Sustainable Energy Reviews, 30, 950-960. DOI: 10.1016/j.rser.2013.11.029
  100. Laino, T., Tuma, C., Curioni, A., Jochnowitz, E., Stolz, S. (2011). A Revisited Picture of the Mechanism of Glycerol Dehydration. The Journal of Physical Chemistry A, 115(15), 3592-3595. DOI: 10.1021/jp201078e
  101. Yuan, Z., Gao, Z., Xu, B.-Q. (2015). Acid-base property of the supporting material controls the selectivity of Au catalyst for glycerol oxidation in base-free water. Chinese Journal of Catalysis, 36(9), 1543-1551. DOI: 10.1016/S1872-2067(15)60936-6
  102. National Center for Biotechnology Information (17 August 2019). PubChem Compound Summary for CID 751, Glyceraldehyde. Available from:
  103. Li, S., Deng, W., Li, Y., Zhang, Q., Wang, Y. (2019). Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. Journal of Energy Chemistry, 32, 138-151. DOI: 10.1016/j.jechem.2018.07.012
  104. Razali, N., Abdullah, A.Z. (2017). Production of lactic acid from glycerol via chemical conversion using solid catalyst: A review. Applied Catalysis A: General, 543, 234-246. DOI: 10.1016/j.apcata.2017.07.002
  105. Zhang, C., Wang, T., Liu, X., Ding, Y. (2016). Cu-promoted Pt/activated carbon catalyst for glycerol oxidation to lactic acid. Journal of Molecular Catalysis A: Chemical, 424, 91-97. DOI: 10.1016/j.molcata.2016.08.018
  106. Fernandes, A., Filipa Ribeiro, M., Lourenço, J.P. (2017). Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catalysis Communications, 95, 16-20. DOI: 10.1016/j.catcom.2017.02.015
  107. Carriço, C.S., Cruz, F.T., dos Santos, M.B., Oliveira, D.S., Pastore, H.O., Andrade, H.M.C., Mascarenhas, A.J.S. (2016). MWW-type catalysts for gas phase glycerol dehydration to acrolein. Journal of Catalysis, 334, 34-41. DOI: 10.1016/j.jcat.2015.11.010
  108. Deleplanque, J., Dubois, J.L., Devaux, J.F., Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1–4), 351-358. DOI: 10.1016/j.cattod.2010.04.012
  109. Liu, S., Tamura, M., Shen, Z., Zhang, Y., Nakagawa, Y., Tomishige, K. (2018). Hydrogenolysis of glycerol with in-situ produced H2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReOx/SiO2 catalyst. Catalysis Today, 303, 106-116. DOI: 10.1016/j.cattod.2017.07.025
  110. Sun, D., Yamada, Y., Sato, S., Ueda, W. (2016). Glycerol hydrogenolysis into useful C3 chemicals. Applied Catalysis B: Environmental, 193, 75-92. DOI: 10.1016/j.apcatb.2016.04.013
  111. Gandarias, I., Arias, P.L., Requies, J., Güemez, M.B., Fierro, J.L.G. (2010). Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Applied Catalysis B: Environmental, 97(1), 248-256. DOI: 10.1016/j.apcatb.2010.04.008
  112. Sullivan, C.J., Kuenz, A., Vorlop, K.-D. (2018). Propanediols. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley‐VCH Verlag GmbH & Co. KGaA. p. 1-15. DOI: 10.1002/14356007.a22_163.pub2
  113. Zhou, C.H., Zhao, H., Tong, D.S., Wu, L.M., Yu, W.H. (2013). Recent Advances in Catalytic Conversion of Glycerol. Catalysis Reviews, 55(4), 369-453. DOI: 10.1080/01614940.2013.816610
  114. Global Epichlorohydrin Market Is Set for Rapid Growth, To Reach Around 2,262.8 Kilo Tons By 2020. 2016 6 April 2016; Available from:
  115. Cui, S., Borgemenke, J., Liu, Z., Keener, H.M., Li, Y. (2019). Innovative sustainable conversion from CO2 and biodiesel-based crude glycerol waste to bio-based polycarbonates. Journal of CO2 Utilization, 34, 198-206. DOI: 10.1016/j.jcou.2019.06.004
  116. Galadima, A., Muraza, O. (2017). Sustainable Production of Glycerol Carbonate from By-product in Biodiesel Plant. Waste and Biomass Valorization, 8(1), 141-152. DOI: 10.1007/s12649-016-9560-y
  117. Hunsom, M., Saila, P. (2015). Electrochemical conversion of enriched crude glycerol: Effect of operating parameters. Renewable Energy, 74, 227-236. DOI: 10.1016/j.renene.2014.08.008
  118. Zhang, C., Wang, T., Ding, Y. (2017). One-step synthesis of pyruvic acid from glycerol oxidation over Pb promoted Pt/activated carbon catalysts. Chinese Journal of Catalysis, 38, 928-937. DOI: 10.1016/S1872-2067(17)62835-3
  119. Tshibalonza, N.N., Monbaliu, J.-C.M. (2017). Revisiting the deoxydehydration of glycerol towards allyl alcohol under continuous-flow conditions. Green Chemistry, 19(13), 3006-3013. DOI: 10.1039/C7GC00657H
  120. Qadariyah, L., Mahfud, M., Sumarno, S., Machmudah, S., Wahyudiono, W., Sasaki, M., Goto, M. (2011). Degradation of glycerol using hydrothermal process. Bioresource Technology, 102(19), 9267-9271. DOI: 10.1016/j.biortech.2011.06.066
  121. Blass, S.D., Hermann, R.J., Persson, N.E., Bhan, A., Schmidt, L.D. (2014). Conversion of glycerol to light olefins and gasoline precursors. Applied Catalysis A: General, 475, 10-15. DOI: 10.1016/j.apcata.2014.01.013
  122. Karinen, R.S., Krause, A.O.I. (2006). New biocomponents from glycerol. Applied Catalysis A: General, 306, 128-133. DOI: 10.1016/j.apcata.2006.03.047
  123. Kostyniuk, A., Bajec, D., Djinović, P., Likozar, B. (2020). Allyl alcohol production by gas phase conversion reactions of glycerol over bifunctional hierarchical zeolite-supported bi- and tri-metallic catalysts Author links open overlay, Chemical Engineering Journal, 397, 125430. DOI: 10.1016/j.cej.2020.125430

Last update:

No citation recorded.

Last update:

No citation recorded.