skip to main content

Development of Microwave-Assisted Sulfonated Glucose Catalyst for Biodiesel Production from Palm Fatty Acid Distillate (PFAD)

School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia

Received: 22 Mar 2021; Revised: 14 Jun 2021; Accepted: 15 Jun 2021; Published: 30 Sep 2021; Available online: 23 Jun 2020.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Microwave-heating method for catalyst preparation has been utilized recently due to its shorter operation time compared to the conventional method. Glucose, a renewable carbon source can be partially carbonized and sulfonated via microwave heating which could result in highly potential heterogeneous carbon-based acid catalyst. In this study, the impacts of the carbonization and sulfonation parameters during the catalyst preparation were investigated. Catalysts prepared were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Brunauer-Emmet-Teller (BET), and Temperature Programmed Desorption–Ammonia (TPD-NH3). Analysis of the carbonization screening process discovered that the best incomplete carbonized glucose (ICG) prepared was at 20 minutes, 20 g of D(+)-glucose with medium microwave power level (400W) which exhibited the highest percentage yield (91.41%) of fatty acid methyl ester (FAME). The total surface area and acid site density obtained were 16.94 m2/g and 25.65 mmol/g, respectively. Regeneration test was further carried out and succeeded to achieve 6 cycles. The highest turnover frequency (TOF) of the sulfonated catalyst was methyl palmitate, 25.214´103 s1 compared to other component of the methyl ester. Kinetic study was developed throughout the esterification process and activation energy from the forward and reverse reaction was 3.36 kJ/mol and 11.96 kJ/mol, respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Sulfonated glucose; Microwave-assisted; Palm Fatty Acid Distillate; Characterization; Turnover Frequency; Kinetic Study
Funding: Ministry of Education Malaysia; Universiti Teknologi Malaysia under contract Vot no. 07H81 and 12J43

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
Statistics:
Share:
  1. Bauer, N., Bosetti, V., Hamdi-Cherif, M., Kitous, A., McCollum, D., Méjean, A., Rao, S., Turton, H., Paroussos, L., Ashina, S., Calvin, K., Wada, K., Vuuren, D.V. (2015). CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies. Technological Forecasting and Social Change, 90, 243-256. DOI: 10.1016/j.techfore.2013.09.009
  2. Höök, M., Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. DOI: 10.1016/j.enpol.2012.10.046
  3. Adewale, P., Dumont, M.-J., Ngadi, M. (2015). Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews, 45, 574-588. DOI: 10.1016/j.rser.2015.02.039
  4. Issariyakul, T., Dalai, A.K. (2014). Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews, 31, 446-471. DOI: 10.1016/j.rser.2013.11.001
  5. Phan, A.N., Phan, T.M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490-3496. DOI: 10.1016/j.fuel.2008.07.008
  6. Malvade, A.V., Satpute, S.T. (2013). Production of Palm Fatty Acid Distillate Biodiesel and Effects of its Blends on Performance of Single Cylinder Diesel Engine. Procedia Engineering, 64, 1485-1494. DOI: 10.1016/j.proeng.2013.09.230
  7. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28, 500-518. DOI: 10.1016/j.biotechadv.2010.03.002
  8. Chai, M., M., Tu, Q., Lu, M., Yang, Y.J. (2014). Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology, 125, 106-113. DOI: 10.1016/j.fuproc.2014.03.025
  9. Chongkhong, S., Tongurai, C., Chetpattananondh, P., Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31, 563-568. DOI: 10.1016/j.biombioe.2007.03.001
  10. Hassan, M.H., Kalam, M.A. (2013). An Overview of Biofuel as a Renewable Energy Source: Development and Challenges. Procedia Engineering, 56, 39-53. DOI: 10.1016/j.proeng.2013.03.087
  11. Singh, S.P., Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14, 200-216. DOI: 10.1016/j.rser.2009.07.017
  12. Leung, D.Y.C., Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 87, 883-890. DOI: 10.1016/j.fuproc.2006.06.003
  13. Lee, A.F., Wilson, K. (2015). Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catalysis Today, 242, 3-18. DOI: 10.1016/j.cattod.2014.03.072
  14. Guldhe, A., Singh, P., Ansari, F.A., Singh, B., Bux, F. (2017). Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel, 187, 180-188. DOI: 10.1016/j.fuel.2016.09.053
  15. Đặng, T.-H., Chen, B-H., Lee, D-J. (2017). Optimization of biodiesel production from transesterification of triolein using zeolite LTA catalysts synthesized from kaolin clay. Journal of the Taiwan Institute of Chemical Engineers, 79, 14-22. DOI: 10.1016/j.jtice.2017.03.009
  16. Islam, A., Taufiq-Yap, Y.H., Ravindra, P., Teo, S.H., Sivasangar, S., Chan, E-S. (2015). Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy, 89, 965-973. DOI: 10.1016/j.energy.2015.06.036
  17. Glisic, S.B., Orlović, A.M. (2014). Review of biodiesel synthesis from waste oil under elevated pressure and temperature: Phase equilibrium, reaction kinetics, process design and techno-economic study. Renewable and Sustainable Energy Reviews, 31, 708-725. DOI: 10.1016/j.rser.2013.12.003
  18. Ning, Y., Niu, S. (2017). Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance. Energy Conversion and Management, 153, 446-454. DOI: 10.1016/j.enconman.2017.10.025
  19. Zahari, M.A.K.M., Zakaria, M.R., Ariffin, H., Mokhtar, M.N., Salihon, J., Shirai, Y., Hassa, M.A. (2012). Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresource Technology, 110, 566-571. DOI: 10.1016/j.biortech.2012.01.119
  20. Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H., Yunus, R. (2015). Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy, 81, 347-354. DOI: 10.1016/j.renene.2015.03.045
  21. Yu, H., Niu, S., Bai, T., Tang, X., Lu, C. (2018). Microwave-assisted preparation of coal-based heterogeneous acid catalyst and its catalytic performance in esterification. Journal of Cleaner Production, 183, 67-76. DOI: 10.1016/j.jclepro.2018.02.145
  22. Shu, Q., Zou, W., He, J., Lesmana, H., Zhang, C., Zou, L. (2019). Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol. Renewable Energy, 135, 836-845. DOI: 10.1016/j.renene.2018.12.067
  23. Funebo, T., Ahrne, L., Kidman, S., Langton, M., Skjoldebrand, C. (2000). Microwave heat treatment of apple before air dehydration – effects on physical properties and microstructure. Journal of Food Engineering, 46, 173-182. DOI: 10.1016/S0260-8774(00)00080-7
  24. Chellappan, S., Nair, V., V.S., K.A. (2018). Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chinese Journal of Chemical Engineering, 26, 2654-2663. DOI: 10.1016/j.cjche.2018.02.034
  25. Thushari, I., Babel, S. (2018). Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology. 248, 199-203. DOI: 10.1016/j.biortech.2017.06.106
  26. Thushari, I., Babel, S. (2018). Preparation of solid acid catalysts from waste biomass and their application for microwave-assisted biodiesel production from waste palm oil. Waste Management & Research, 36, 719-828. DOI: 10.1177/0734242X18789821
  27. Laohapornchaiphan, J., Smith, C.B., Smith, S.M. (2017). One-step Preparation of Carbon-based Solid Acid Catalyst from Water Hyacinth Leaves for Esterification of Oleic Acid and Dehydration of Xylose. Chem Asian Journal, 12, 3178-3186. DOI: 10.1002/asia.201701369
  28. Nda-Umar, U.I., Ramli, I., Muhamad, E.N., Taufiq-Yap, Y.H., Azri, N. (2020). Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Conversion and Biorefinery, 10, 1-16. DOI: 10.1007/s13399-020-00784-0
  29. Zhou, Y., Niu, S., Li, J. (2016). Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Conversion and Management, 114, 188-196. DOI: 10.1016/j.enconman.2016.02.027
  30. Klinger, J.L., Westover, T.L., Emerson, R.M., Williams, C.L., Hernandez, S., Monson, G.D. (2018). Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Applied Energy, 228, 535-545. DOI: 10.1016/j.apenergy.2018.06.107
  31. Klinbun, W., Rattanadecho, P. (2012). Analysis of microwave induced natural convection in a single mode cavity (Influence of sample volume, placement, and microwave power level). Applied Mathematical Modelling, 36, 813-828. DOI: 10.1016/j.apm.2011.07.003
  32. Li, M., Chen, D., Zhu, X. (2013). Preparation of solid acid catalyst from rice husk char and its catalytic performance in esterification. Chinese Journal of Catalysis, 34, 1674-1682. DOI: 10.1016/S1872-2067(12)60634-2
  33. Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H. (2015). Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese Journal of Chemical Engineering, 23, 1857-1864. DOI: 10.1016/j.cjche.2015.07.028
  34. Li, Z., Raghavan, V.G.S., Orsat, V. (2010). Temperature and power control in microwave drying. Journal of Food Engineering, 97, 478-483. DOI: 10.1016/j.jfoodeng.2009.11.004
  35. Nakajima, K., Hara, M. (2012). Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst. ACS Catalysis, 2, 1296-1304. DOI: 10.1021/cs300103k
  36. Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T. (2006). Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 18, 3039-3045. DOI: 10.1021/cm0605623
  37. Forzatti, P., Lietti, L. (1999). Catalyst deactivation. Catalysis Today, 52, 165-181. DOI: 10.1016/S0920-5861(99)00074-7
  38. Zainol, M.M., Amin, N.A.S., Asmadi, M. (2017). Effects of thermal treatment on carbon cryogel preparation for catalytic esterification of levulinic acid to ethyl levulinate. Fuel Processing Technology, 167, 431-441. DOI: 10.1016/j.fuproc.2017.07.028
  39. Lou, W.-Y., Zong, M-H., Duan, Z-Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 99, 8752-8758. DOI: 10.1016/j.biortech.2008.04.038
  40. Liu, T., Li, Z., Li, W., Shi, C., Wang, Y. (2013). Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresource Technology, 133, 618-621. DOI: 10.1016/j.biortech.2013.01.163
  41. Touhami, D., Zhu, Z., Balan, W.S., Janaun, J., Haywood, S., Zein, S. (2017). Characterization of rice husk-based catalyst prepared via conventional and microwave carbonisation. Journal of Environmental Chemical Engineering, 5, 388-394. DOI: 10.1016/j.jece.2017.04.020
  42. Kastner, J.R., Miller, J., Geller, D.P., Locklin, J., Keith, L.H., Johnson, T. (2012). Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today, 190, 122-132. DOI: 10.1016/j.cattod.2012.02.006
  43. Shu, Q., Nawaz, Z., Gao, J.X., Liao, Y.H., Zhang, Q., Wang, D.Z., Wang, J. F. (2010). Synthesis of biodiesel from waste oil feedstocks using a carbon-based solid acid catalyst: Reaction and separation. Bioresource Technology, 101, 5374-5384. DOI: 10.1016/j.biortech.2010.02.050
  44. Chen, H.-Y., Cui, Z-W. (2016). A Microwave-Sensitive Solid Acid Catalyst Prepared from Sweet Potato via a Simple Method. Catalysts, 6(12), 211. DOI: 10.3390/catal6120211
  45. Bensebaa, F. (2013). Chapter 5 - Clean Energy. In: F. Bensebaa (Ed) Interface Science and Technology, Elsevier. pp. 279-383. DOI: 10.1016/B978-0-12-369550-5.00005-7
  46. Aldana-Pérez, A., Lartundo-Rojas, L., Gómez, R., Niño-Gómez, M.E. (2012). Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 100, 128-138. DOI: 10.1016/j.fuel.2012.02.025
  47. Zhang, H., Luo, X., Li, X., Chen, G.Z., He, F., Wu, T. (2016). Preparation and Characterization of a Sulfonated Carbonbased Solid Acid Microspheric Material (SCSAM) and its use for the Esterification of Oleic Acid with Methanol. Austin Chemical Engineering, 3, 1-6. ISSN: 2381-8905
  48. Gutmann, T., Ratajczyk, T., Xu, Y., Breitzke, H., Grünberg, A., Dillenberger, S. (2010). Understanding the leaching properties of heterogenized catalysts: A combined solid-state and PHIP NMR study. Solid State Nuclear Magnetic Resonance, 38, 90-96. DOI: 10.1016/j.ssnmr.2011.03.001
  49. Chin, L.H., Abdullah, A.Z., Hameed, B.H. (2012). Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. Chemical Engineering Journal, 183, 104-107. DOI: 10.1016/j.cej.2011.12.028
  50. Jamal, Y., Rabie, A., Boulanger, B. (2015). Determination of methanolysis rate constants for low and high fatty acid oils using heterogeneous surface reaction kinetic models. Reaction Kinetics, Mechanisms and Catalysis, 114, 63-74. DOI: 10.1007/s11144-014-0780-5
  51. Tasić, M.B., Miladinović, M.R., Stamenković, O.S., Veljković, V.B., Skala, D.U. (2015). Kinetic Modeling of Sunflower Oil Methanolysis Catalyzed by Calcium-Based Catalysts. Chemical Engineering & Technology, 38, 1550-1556. DOI: 10.1002/ceat.201500076
  52. Miladinović, M.R., Krstić, J.B., Tasić, M.B., Stamenković, O.S., Veljković, V.B. (2014). A kinetic study of quicklime-catalyzed sunflower oil methanolysis. Chemical Engineering Research and Design, 92, 1740-1752. DOI: 10.1016/j.cherd.2013.11.023
  53. Stamenković, O., Lazic, M., Veljković, V., Skala, D. (2008). Kinetics of sunflower oil methanolysis at low temperatures. Bioresource technology, 99, 1131-1140. DOI: 10.1016/j.biortech.2007.02.028
  54. Saltiel, C., Datta, A.K. (1999). Heat and Mass Transfer in Microwave Processing. In Advances in Heat Transfer, Elsevier. pp. 1-94. DOI: 10.1016/S0065-2717(08)70303-4
  55. Zhang, H., Datta, A.K. (2003). Microwave Power Absorption in Single - and Multiple - Item Foods. Food and Bioproducts Processing, 81, 257-265. DOI: 10.1205/096030803322438027
  56. Pisarello, M.L., Dalla, C.B., Mendow, G., Querini, C.A. (2010). Esterification with ethanol to produce biodiesel from high acidity raw materials: Kinetic studies and analysis of secondary reactions. Fuel Processing Technology, 91, 1005-1014. DOI: 10.1016/j.fuproc.2010.03.001
  57. Klaewkla, R., Arend, M., Hölderich, W. (2011). A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems. In H. Nakajima (Ed.) Mass Transfer-Advanced Aspects. IntechOpen. pp. 667-684. DOI: 10.5772/22962
  58. Jacob, I., Clausen, E., Carrier, D.J. (2008). Kinetics determination of soybean oil transesterification in the design of a continuous biodiesel production process. Undergraduate Honors Theses, Biological and Agricultural Engineering, University of Arkansas
  59. Wang, Y.-T., Fang, Z., Zhang, F. (2019). Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catalysis Today, 319, 172-181. DOI: 10.1016/S1872-5813(17)30018-X
  60. Li, L., Yan, B., Li, H., Yu, S., Liu, S., Yu, H. (2018). SO42−/ZrO2 as catalyst for upgrading of pyrolysis oil by esterification. Fuel, 226, 190-194. DOI: 10.1016/j.fuel.2018.04.006
  61. Lieu, T., Yusup, S., Moniruzzaman, M., (2016). Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil. Bioresource Technology, 211, 248-256. DOI: 10.1016/j.biortech.2016.03.105
  62. Mazubert, A., Taylor, C., Aubin, J., Poux, M. (2014). Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresource Technology, 161, 270-279. DOI: 10.1016/j.biortech.2014.03.011
  63. Xu, W., Zhou, J., Su, Z., Ou, Y., You, Z. (2016). Microwave catalytic effect: a new exact reason for microwave-driven heterogeneous gas-phase catalytic reactions. Catalysis Science & Technology, 6, 698-702. DOI: 10.1039/C5CY01802A
  64. Díaz-Ortiz, Á., Prieto, P., de la Hoz, A. (2019). A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. The Chemical Record, 19, 85-97. DOI: 10.1002/tcr.201800059
  65. Roman, F.F., Ribeiro, A.E., Queiroz, A., Lenzi, G.G., Chaves, E.S., Brito, P. (2019). Optimization and kinetic study of biodiesel production through esterification of oleic acid applying ionic liquids as catalysts. Fuel, 239, 1231-1239. DOI: 10.1016/j.fuel.2018.11.087

Last update:

No citation recorded.

Last update:

No citation recorded.