skip to main content

Electrochemical Generation of Hydrogen and Methanol using ITO Sheet Decorated with Modified-Titania as Electrode

Chemical Reaction Engineering Group, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia

Received: 3 Mar 2021; Revised: 30 Apr 2021; Accepted: 5 May 2021; Available online: 6 May 2021; Published: 30 Jun 2021.
Editor(s): Istadi Istadi, Mohd Asmadi Mohammed Yussuf, Salman Raza Naqvi, Nor Saidina-Amin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Current issues of global warming and environmental pollution due to extensive use of fossil fuels has been reached to an alarming position. Being CO2 as main byproduct of fossil fuel consumption and water as abundantly available on earth surface has great potential to replace fossil fuels as energy source. Herein, electrocatalytic CO2 reduction with water for methanol and hydrogen gas (H2) production over ITO sheet decorated with modified-Titanium nanorods (TiO2 NR), has been investigated. The performance comparison of electrocatalytic activity of hydrothermally modified-titania with commercial TiO2 microparticles (MP) were further investigated. Electrochemical reactor containing KHCO3 aqueous solution with CO2 as an electrolyte and modified TiO2 nanorods (NR) as working electrodes offer an eco-friendly system to produce clean and sustainable energy system. The typical rates of product, i.e. methanol and H2 generation from the ITO sheet decorated with modified TiO2 NR layer recorded higher than those for the ITO sheet with commercial TiO2 microparticle. At 2.0V applied potential vs Ag/AgCl as reference electrode, the modified TiO2 NR electrocatalyst yielded methanol at a rate of 3.32 µmol.cm2.L1 and H2 at a rate of 6 µmol.cm2.L1 which was higher than that of commercial TiO2 MP electrocatalyst (methanol = 1.5 µmol.cm2.L1 and H2 = 3.7 µmol.cm2.L1). The enhancement in product yields of methanol and H2 was mainly due to the notable improvements and modification in texture of TiO2 working electrode interface. Hence, it is concluded that the modified TiO2 NR can be considered as a competent candidate for sustainable energy conversion applications. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: CO2 electroreduction; water electrocatalysis; methanol; hydrogen; TiO2 nanorods
Funding: Ministry of Higher Education Malaysia; Universiti Teknologi Malaysia under contract Vot No. 5F101

Article Metrics:

  1. Zhu, J., Hu, L., Zhao, P., Lee, L.Y.S., Wong, K.Y. (2020). Recent Advances in Electrocatalytic Hydrogen Evolution using Nanoparticles. Chemical Reviews, 120, 851-918. DOI: 10.1021/acs.chemrev.9b00248
  2. Tahir, B., Er, P.W., Tahir, M., Nawawi, M.G.M., Siraj, M., Alias, H., Fatehmulla, A. (2020). Tailoring metal/support interaction in 0D TiO2 NPs/MPs embedded 2D MAX composite with boosted interfacial charge carrier separation for stimulating photocatalytic H2 production. Journal of Environmental Chemical Engineering, 8(6), 104529. DOI: 10.1016/j.jece.2020.104529
  3. Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., Chen, R., Yang, S., Jin, Z. (2018). Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Advanced Science, 5, 1700275. DOI: 10.1002/advs.201700275
  4. Abbas, T., Tahir, M. (2021). Tri-metallic Ni–Co modified reducible TiO2 nanocomposite for boosting H2 production through steam reforming of phenol. International Journal of Hydrogen Energy, 46(13), 8932-8949. DOI: 10.1016/j.ijhydene.2020.12.209
  5. Song, R.-B., Zhu, W., Fu, J., Chen, Y., Liu, L., Zhang, J.-R., Lin, Y., Zhu, J.-J. (2020). Electrode Materials Engineering in Electrocatalytic CO2 Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 32, 1903796. DOI: 10.1002/adma.201903796
  6. Yang, P., Li, W., Lian, Y., Yu, F., Dai, B., Guo, X., Liu, Z., Peng, B. (2020). A Facile Approach to Synthesize CoO-Co3O4/TiO2 NAs for Reinforced Photoelectrocatalytic Water Oxidation. Journal of Solid State Electrochemistry, 24, 941-950. DOI: 10.1007/s10008-020-04528-y
  7. Jiang, X.X., De Hu, X., Tarek, M., Saravanan, P., Alqadhi, R., Chin, S.Y., Rahman Khan, M.M. (2020). Tailoring the Properties of g-C3N4 with CuO for Enhanced Photoelectrocatalytic CO2 Reduction to Methanol. Journal of CO2 Utilization, 40, 101222. DOI: 10.1016/j.jcou.2020.101222
  8. Tahir, M., Tahir, B., Nawawi, M.G.M., Hussain, M., Muhammad, A. (2019). Cu-NPs Embedded 1D/2D CNTs/pCN Heterojunction Composite Towards Enhanced and Continuous Photocatalytic CO2 Reduction to Fuels. Applied Surface Science, 485, 450-461. DOI: 10.1016/j.apsusc.2019.04.220
  9. Perini, J.A.L., Torquato, L.D.M., Irikura, K., Zanoni, M.V.B. (2019). Ag/Polydopamine-Modified Ti/TiO2 Nanotube Arrays: A Platform for Enhanced CO2 Photoelectroreduction to Methanol. Journal of CO2 Utilization, 34, 596-605. DOI: 10.1016/j.jcou.2019.08.006
  10. Marino, T., Figoli, A., Molino, A., Argurio, P., Molinari, R. (2019). Hydrogen and Oxygen Evolution in a Membrane Photoreactor using Suspended Nanosized Au/TiO2 and Au/CeO2. ChemEngineering, 3, 5. DOI: 10.3390/chemengineering3010005
  11. Li, D., Wang, S., Tian, Y., Ma, H.P., Ma, C., Fu, Y., Dong, X. (2018). Preparation and Photoelectrocatalytic Performance of Ti/PbO2 Electrodes Modified with Ti4O7. ChemistrySelect, 3, 5098-5105. DOI: 10.1002/slct.201703181
  12. Tahir, M. (2019). La-modified TiO2/Carbon Nanotubes Assembly Nanocomposite for Efficient Photocatalytic Hydrogen Evolution from Glycerol-Water Mixture. International Journal of Hydrogen Energy, 44(7), 3711-3725. DOI: 10.1016/j.ijhydene.2018.12.095
  13. Inoue, T., Fujishima, A., Konishi, S., Honda, K. (1979). Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 277, 637-638. DOI: 10.1038/277637a0
  14. Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. DOI: 10.1038/238037a0
  15. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and Spectroscopic Study of Fe-doped TiO2 Nanoparticles Prepared by Sol–Gel Method. Scientia Iranica, 20(3), 1018-1022. DOI: 10.1016/j.scient.2013.05.017
  16. Nasralla, N.H.S., Yeganeh, M., Astuti, Y., Piticharoenphun, S., and Šiller, L. (2018). Systematic Study of Electronic Properties of Fe-doped TiO2 Nanoparticles by X-ray Photoemission Spectroscopy. Journal of Materials Science: Materials in Electronics, 29(20), 17956-17966. DOI: 10.1007/s10854-018-9911-5
  17. Zhu, S., Chen, X., Li, Z., Ye, X., Liu, Y., Chen, Y., Yang, L., Chen, M., Zhang, D., Li, G., Li, H. (2020). Cooperation between Inside and Outside of TiO2: Lattice Cu+ Accelerates Carrier Migration to the Surface of Metal Copper for Photocatalytic CO2 Reduction. Applied Catalysis B: Environmental, 264, 118515. DOI: 10.1016/j.apcatb.2019.118515
  18. Sheu, J.K., Liao, P.H., Lee, Y.C., Wang, H.K., Lee, M.L. (2020). Photoelectrochemical Generation of Hydrogen and Formic Acid using GaN Films Decorated with TiO2/Ag Nanoparticles Composite Structure as Photoelectrodes. The Journal of Physical Chemistry C, 124, 9591-9598. DOI: 10.1021/acs.jpcc.0c01699
  19. Liu, Z., Xu, K., Yu, H., Sun, Z. (2020). Synergistic Effect of Ag/MoS2/TiO2 Heterostructure Arrays on Enhancement of Photoelectrochemical and Photocatalytic Performance. International Journal of Energy Research, 1-13. DOI: 10.1002/er.6275
  20. Baran, E., Yazici, B. (2016). Effect of Different Nano-Structured Ag Doped TiO2-NTs Fabricated by Electrodeposition on the Electrocatalytic Hydrogen Production. International Journal of Hydrogen Energy, 41, 2498-2511. DOI: 10.1016/j.ijhydene.2015.12.028
  21. Zhou, J., Li, Y., Yu, L., Li, Z., Xie, D., Zhao, Y., Yu, Y. (2020). Facile in Situ Fabrication of Cu2O@Cu Metal-Semiconductor Heterostructured Nanorods for Efficient Visible-Light Driven CO2 Reduction. Chemical Engineering Journal, 385, 123940. DOI: 10.1016/j.cej.2019.123940
  22. Kerdnoi, P., Autthanit, C., Chitpong, N., Jongsomjit, B. (2020). Catalytic Dehydration of Ethanol over W/TiO2 Catalysts Having Different Phases of Titania Support. Bulletin of Chemical Reaction Engineering & Catalysis, 15, 96-103. DOI: 10.9767/bcrec.15.1.5606.96-103
  23. Petronella, F., Diomede, S., Fanizza, E., Mascolo, G., Sibillano, T., Agostiano, A., Curri, M.L., Comparelli, R. (2013). Photodegradation of Nalidixic Acid Assisted by TiO2 Nanorods/Ag Nanoparticles based Catalyst. Chemosphere, 91(7), 941-947. DOI: 10.1016/j.chemosphere.2013.01.107
  24. Karim, K.M.R., Ong, H.R., Abdullah, H., Yousuf, A., Cheng, C.K., Khan, M.M.R. (2018). Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 236-244. DOI: 10.9767/bcrec.13.2.1317.236-244
  25. Zarei, E., Jamali, M.R., Ahmadi, F. (2018). Highly Sensitive Electrocatalytic Determination of Formaldehyde using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 529-542. DOI: 10.9767/bcrec.13.3.2341.529-542
  26. Abbas, T., Tahir, M., Saidina Amin, N.A. (2019). Enhanced Metal–Support Interaction in Ni/Co3O4/TiO2 Nanorods toward Stable and Dynamic Hydrogen Production from Phenol Steam Reforming. Industrial & Engineering Chemistry Research, 58, 517-530. DOI: 10.1021/acs.iecr.8b03542
  27. Lee, C.H., Rhee, S.W., Choi, H.W. (2012). Preparation of TiO2 Nanotube/Nanoparticle Composite Particles and their Applications in Dye-Sensitized Solar Cells. Nanoscale Research Letters, 7(1), 48. DOI: 10.1186/1556-276X-7-48
  28. Steky, F.V., Suendo, V., Mukti, R.R., Benu, D.P., Reza, M., Adhika, D.R., Tanuwijaya, V.V., Nugraha, A.B. (2019). bcl Morphology Formation Strategy on Nanostructured Titania via Alkaline Hydrothermal Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 14, 513-520. DOI: 10.9767/bcrec.14.3.3853.513-520
  29. Huang, J., Guo, X., Yue, G., Hu, Q., Wang, L. (2018). Boosting CH3OH Production in Electrocatalytic CO2 Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene. ACS Applied Materials & Interfaces, 10(51), 44403-44414. DOI: 10.1021/acsami.8b14822

Last update:

No citation recorded.

Last update:

No citation recorded.