skip to main content

Chemical and Structural Changes of Ozonated Empty Fruit Bunch (EFB) in a Ribbon-Mixer Reactor

11. Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia., Malaysia

22. Faculty of Chemical Engineering, Universiti Teknologi MARA, Johor Branch, Pasir Gudang Campus, Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor, Malaysia

3Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,, Malaysia

4 Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

View all affiliations
Received: 2 Mar 2021; Revised: 21 Apr 2021; Accepted: 23 Apr 2021; Available online: 25 Apr 2021; Published: 30 Jun 2021.
Editor(s): Istadi Istadi, Mohd Asmadi Mohammed Yussuf, Salman Raza Naqvi, Nor Saidina-Amin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Agricultural wastes especially empty fruit bunch (EFB) are abundantly available to be utilized as a feedstock for biochemical synthesis or biofuel production. The components of the waste include lignin, hemicellulose and cellulose. Cellulose, the polymer of glucose, is the active component for producing bio-based chemicals. However, it is difficult to isolate cellulose since lignin, the most outer layer in the waste is recalcitrant. Therefore, the agricultural wastes need to be pre-treated prior to downstream processing. The aim of this study was to investigate the effect of ozone pretreatment on lignin degradation and total reducing sugar (TRS) yield. EFB was pre-treated using ozone gas in a ribbon-mixer reactor. The chemical and structural changes of ozonated EFB were analysed. The highest delignification obtained were 95.7 wt.% and TRS yield was enhanced to 84.9% at a moisture content of 40 wt.% with 60 g/m3 ozone concentration within one hour of reaction time. Both NMR and FTIR spectra conferred major peaks inferring higher lignin degradation could be achieved using ozonolysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Ozone; Oil Palm Biomass; Pre-treatment; Delignification; Empty Fruit Bunch
Funding: Universiti Teknologi Malaysia (UTM)

Article Metrics:

  1. Anastassiadis, S. (2016). Carbon Sources For Biomass, Food, Fossils, Biofuels and Biotechnology - Review Article. World Journal of Biotechnology, 1, 1–32
  2. Adarme, O.F.H., Baêta, B.E.L., Lima, D.R.S., Gurgel, L.V.A., de Aquino, S.F. (2017). Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Industrial Crops and Products, 109, 288–299. DOI: 10.1016/j.indcrop.2017.08.040
  3. Kumar, D., Singh, B., Korstad, J. (2017). Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable and Sustainable Energy Reviews, 73, 654–671. DOI: 10.1016/j.rser.2017.01.022
  4. Ghimire, A., Trably, E., Frunzo, L., Pirozzi, F., Lens, P.N.L., Esposito, G., Cazier, E.A., Escudié, R. (2018). Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology, 248, 180–186. DOI: 10.1016/j.biortech.2017.07.062
  5. Otti, V., Ifeanyichukwu, H., Nwaorum, F., Ogbuagu, F. (2014). Sustainable oil palm waste management in engineering development. Civil and Environmental Research, 6, 121–125
  6. Shamjuddin, A., Rasid, N.S.A., Raissa, M.M.M., Omar, W.N.W., Amin, N.A.S. (2021). Modelling of ozone multiphase flow behaviour in an ozonolysis reactor for pretreatment of oil palm waste. IOP: Materials Science and Engineering, 1053, 12109. DOI: 10.1088/1757-899X/1053/1/012109
  7. Rasid, N.S.A., Asadullah, M., Malek, N.H., Amin, N.A.S. (2020). Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: bio-oil composition and characteristics. IOP Conference Series: Materials Science and Engineering, 736, 032021. DOI: 10.1088/1757-899x/736/3/032021
  8. Zoghlami, A., Paës, G. (2019). Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry, 7, 874. DOI: 10.3389/fchem.2019.00874
  9. Rasid, N.S.A., Zainol, M.M., Amin, N.A.S. (2020). 14 - Pretreatment of agroindustry waste by ozonolysis for synthesis of biorefinery products, in: R.P. Kumar, E. Gnansounou, J.K. Raman, G. Baskar (Eds.) Refining Biomass Residues for Sustainable Energy and Bioproducts. Academic Press2020, pp. 303–336. DOI: 10.1016/B978-0-12-818996-2.00014-4
  10. Domański, J., Marchut-Mikołajczyk, O., Polewczyk, A., Januszewicz, B. (2017). Ozonolysis of straw from Secale cereale L. for anaerobic digestion. Bioresource Technology, 245, 394–400. DOI: 10.1016/j.biortech.2017.08.090
  11. Daouk, E., Van de Steene, L., Paviet, F., Martin, E., Valette, J., Salvador, S. (2017). Oxidative pyrolysis of wood chips and of wood pellets in a downdraft continuous fixed bed reactor. Fuel, 196, 408–418. DOI: 10.1016/j.fuel.2017.02.012
  12. Solomon, R., Miron, J., Rubinstein, A., Ben-Ghedalia, D. (1992). Ozone-treated cotton stalks as a component of a ration for growing lambs. Animal Feed Science and Technology, 37, 185–192. DOI: 10.1016/0377-8401(92)90002-N
  13. Lee, J., Jameel, H., Venditti, R. (2010). Effect of ozone and autohydrolysis pretreatments on enzymatic digestibility of coastal bermuda grass. Bioresources, 5(2), 1084–1101
  14. Arvaniti, E., Jerre, A.B.B., Schmidt, J.E. (2012). Wet oxidation pretreatment of rape straw for ethanol production. Biomass and Bioenergy, 39, 94–105. DOI: 10.1016/j.biombioe.2011.12.040
  15. Falconí, J.H.H., Soares, J., Rocha, D.N., Vaz, M.G.M.V., Martins, M.A. (2021). Strain screening and ozone pretreatment for algae farming in wastewaters from sugarcane ethanol biorefinery. Journal of Cleaner Production, 282, 124522. DOI: 10.1016/j.jclepro.2020.124522
  16. Pisutpaisal, N., Tanikkul, P., Phoochinda, W. (2014). Improvement of Mesophilic Biohydrogen Production from Palm Oil Mill Effluent Using Ozonation Process. Energy Procedia, 50, 723–728. DOI: 10.1016/j.egypro.2014.06.089
  17. Cardeña, R., Moreno, G., Bakonyi, P., Buitrón, G. (2017). Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chemical Engineering Journal, 307, 948–954. DOI: 10.1016/j.cej.2016.09.016
  18. Bar Oz, Y., Mamane, H., Menashe, O., Cohen-Yaniv, V., Kumar, R., Iasur Kruh, L., Kurzbaum, E. (2018). Treatment of olive mill wastewater using ozonation followed by an encapsulated acclimated biomass. Journal of Environmental Chemical Engineering, 6, 5014–5023. DOI: 10.1016/j.jece.2018.07.003
  19. Vidal, P.F., Molinier, J. (1988). Ozonolysis of lignin — Improvement of in vitro digestibility of poplar sawdust. Biomass, 16, 1–17. DOI: 10.1016/0144-4565(88)90012-1
  20. Cesaro, A., Belgiorno, V. (2013). Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrasonics Sonochemistry, 20, 931–936. DOI: 10.1016/j.ultsonch.2012.10.017
  21. García-Cubero, M.T., Palacín, L.G., González-Benito, G., Bolado, S., Lucas, S., Coca, M. (2012). An analysis of lignin removal in a fixed bed reactor by reaction of cereal straws with ozone. Bioresource Technology, 107, 229–234. DOI: 10.1016/j.biortech.2011.12.010
  22. Wan Omar, W.N.N., Amin, N.A.S. (2016). Multi response optimization of oil palm frond pretreatment by ozonolysis. Industrial Crops and Products, 85, 389–402. DOI: 10.1016/j.indcrop.2016.01.027
  23. Agu, C.E., Pfeifer, C., Moldestad, B.M.E. (2019). Prediction of void fraction and minimum fluidization velocity of a binary mixture of particles: Bed material and fuel particles. Powder Technology, 349, 99–107 DOI: 10.1016/j.powtec.2019.03.027
  24. Gui, N., Jiang, S., Tu, J., Yang, X. (2019). Gas-Particle and Granular Flow Systems: Coupled Numerical Methods and Applications. Elsevier
  25. Gray, J.M.N.T. (2018). Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50, 407–433. DOI: 10.1146/annurev-fluid-122316-045201
  26. Schultz-Jensen, N., Kádár, Z., Thomsen, A.B., Bindslev, H., Leipold, F. (2011). Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production. Applied Biochemistry and Biotechnology, 165, 1010–1023. DOI: 10.1007/s12010-011-9316-x
  27. Criegee, R. (1975). Mechanism of Ozonolysis. Angewandte Chemie International Edition in English, 14, 745–752. DOI: 10.1002/anie.197507451
  28. Travaini, R., Martín-Juárez, J., Lorenzo-Hernando, A., Bolado-Rodríguez, S. (2016). Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 199, 2–12. DOI: 10.1016/j.biortech.2015.08.143
  29. Osuna-Laveaga, D.R., García-Depraect, O., Vallejo-Rodríguez, R., López-López, A., León-Becerril, E. (2020). Integrated Ozonation-Enzymatic Hydrolysis Pretreatment of Sugarcane Bagasse: Enhancement of Sugars Released to Expended Ozone Ratio. Processes, 8(10), 1274. DOI: 10.3390/pr8101274
  30. Pham, S.T., Nguyen, M.B., Le, G.H., Pham, T.T., Quan, T.T., Nguyen, T.D., Son, T.L., Vu, T.A. (2019). Cellulose conversion to 5 hydroxymethyl furfural (5-HMF) using Al-incorporated SBA-15 as highly efficient catalyst. Journal of Chemistry, 2019, 5785621. DOI: 10.1155/2019/5785621
  31. Vasić, K., Knez, Ž., Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 26(3), 753. DOI: 10.3390/molecules26030753
  32. Pyo, S.-H., Glaser, S.J., Rehnberg, N., Hatti-Kaul, R. (2020). Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration. ACS Omega, 5, 14275–14282. DOI: 10.1021/acsomega.9b04406
  33. Rastegari, A.A. (2018). Chapter 8 - Molecular Mechanism of Cellulase Production Systems in Penicillium, New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 153–166. DOI: 10.1016/B978-0-444-63505-1.00008-7
  34. Kong-Win Chang, J., Duret, X., Berberi, V., Zahedi-Niaki, H., Lavoie, J.M. (2018). Two-step thermochemical cellulose hydrolysis with partial neutralization for glucose production. Frontiers in Chemistry, 6, 117. DOI: 10.3389/fchem.2018.00117
  35. Padzil, F.N.M., Lee, S.H., Ainun, Z.M.A.A., Lee, C.H., Abdullah, L.C. (2020). Potential of oil palm empty fruit bunch resources in nanocellulose hydrogel production for versatile applications: A review. Materials, 13(5), 1245. DOI: 10.3390/ma13051245
  36. Isroi, I., Cifriadi, A. (2018). Oxidation of Cellulose from Oil Palm Empty Fruit Bunch Using Hydrogen Peroxide in Alkaline Condition. Jurnal Selulosa, 8(02), 51–60. DOI: 10.25269/jsel.v7i02.233
  37. Travaini, R., Barrado, E., Bolado-Rodríguez, S. (2016). Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse. Bioresource Technology, 214, 150–158. DOI: 10.1016/j.biortech.2016.04.102
  38. Souza-Corrêa, J.A., Oliveira, C., Nascimento, V.M., Wolf, L.D., Gómez, E.O., Rocha, G.J.M., Amorim, J. (2014). Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: the Influence of Biomass Particle Size in the Ozonation Process. Applied Biochemistry and Biotechnology, 172, 1663–1672. DOI: 10.1007/s12010-013-0609-0
  39. Fearon, O., Kuitunen, S., Ruuttunen, K., Alopaeus, V., Vuorinen, T. (2020). Detailed Modeling of Kraft Pulping Chemistry. Delignification. Industrial & Engineering Chemistry Research, 59, 12977–12985. DOI: 10.1021/acs.iecr.0c02110
  40. Zhao, Z., Zhang, J., Li, Y., Li, F., Liu, P. (2021). Effects and Mechanisms of Alkali Recycling and Ozone Recycling on Enzymatic Conversion in Alkali Combined with Ozone Pretreatment of Corn Stover. Applied Biochemistry and Biotechnology, 193, 281–295. DOI: 10.1007/s12010-020-03425-4
  41. Travaini, R., Barrado, E., Bolado, S. (2015). Sugarcane bagasse ozonolysis pretreatment – Hydrolysates fermentation by brewer's yeast Saccharomyces cerevisiae. Journal of Biotechnology, 208, S118. DOI: 10.1016/j.jbiotec.2015.06.373
  42. Li, C., Wang, L., Chen, Z., Li, Y., Wang, R., Luo, X., Cai, G., Li, Y., Yu, Q., Lu, J. (2015). Ozonolysis pretreatment of maize stover: The interactive effect of sample particle size and moisture on ozonolysis process. Bioresource Technology, 183, 240–247. DOI: 10.1016/j.biortech.2015.01.042
  43. Bhattarai, S., Bottenus, D., Ivory, C.F., Gao, A.H., Bule, M., Garcia-Perez, M., Chen, S. (2015). Simulation of the ozone pretreatment of wheat straw. Bioresource Technology, 196, 78–87. DOI: 10.1016/j.biortech.2015.07.022
  44. Mamleeva Nadezhda, A., Autlov Stanislav, A., Bazarnova Natal’ya, G., Lunin Valery, V. (2009). Delignification of softwood by ozonation. Pure and Applied Chemistry, 81(11), 2081–2091. DOI: 10.1351/PAC-CON-08-10-11
  45. Souza-Corrêa, J.A., Ridenti, M.A., Oliveira, C., Araújo, S.R., Amorim, J. (2013). Decomposition of Lignin from Sugar Cane Bagasse during Ozonation Process Monitored by Optical and Mass Spectrometries. The Journal of Physical Chemistry B, 117, 3110–3119. DOI: 10.1021/jp3121879
  46. Barros, R.d.R.O.d., Paredes, R.d.S., Endo, T., Bon, E.P.d.S., Lee, S.-H. (2013). Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 136, 288–294. DOI: 10.1016/j.biortech.2013.03.009
  47. Kádár, Z., Schultz-Jensen, N., Jensen, J.S., Hansen, M.A.T., Leipold, F., Bjerre, A.-B. (2015). Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment. Biomass and Bioenergy, 81, 26–30. DOI: 10.1016/j.biombioe.2015.05.012
  48. Lim, M., Zulkifli, A.Z.S. (2018). Investigation of biomass surface modification using non-thermal plasma treatment. Plasma Science and Technology, 20, 115502. DOI: 10.1088/2058-6272/aac819
  49. Omar, W.N.N.W., Amin, N.A.S. (2021). Fractionation of Oil Palm Fronds (OPF) by Ozonolysis for Enhanced Sugar Production, Chemical Engineering Transactions, 83, 409–414. DOI: 10.3303/CET2183069
  50. Binder, A., Pelloni, L., Fiechter, A., (1980) Delignification of straw with ozone to enhance biodegradability. European Journal of Applied Microbiology and Biotechnology, 11, 1-5,
  51. Neely, W.C. (1984). Factors Affecting The Pretreatment of Biomass With Gaseous Ozone. Biotechnology and Bioengineering, 26, 59–65. DOI: 10.1002/bit.260260112

Last update:

No citation recorded.

Last update:

No citation recorded.