skip to main content

Mesoporous Magnesium Oxide Adsorbent Prepared via Lime (Citrus aurantifolia) Peel Bio-templating for CO2 Capture

A. H. Ruhaimiscopus C. C. TehMuhammad Arif Ab Aziz scopus

School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Received: 2 Mar 2021; Revised: 11 Apr 2021; Accepted: 12 Apr 2021; Published: 30 Jun 2021; Available online: 12 Apr 2012.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

The utilization of the lime (Citrus aurantifolia) peel as a template can improve the adsorbent’s structural properties, which consequently affect its CO2 uptake capacity. Herein, a mesoporous magnesium oxide (MgO-lime (Citrus aurantifolia) peel template (LPT)) adsorbent was synthesized using an LPT. MgO-LPT demonstrated improved structural properties and excellent CO2 uptake capacity. Moreover, another MgO adsorbent was prepared via thermal decomposition (MgO-TD) for comparison. The prepared adsorbents were characterized by N2 physisorption, Fourier transform infrared spectroscopy and thermogravimetric analysis. The CO2 uptake of these adsorbents was under 100% CO2 gas and ambient temperature and pressure conditions. MgO-LPT exhibited a higher Brunauer–Emmett–Teller surface area, Barrett–Joyner–Halenda pore volume, and pore diameter of 23 m2.g1, 0.142 cm3.g1, and 24.6 nm, respectively, than those of MgO-TD, which indicated the mesoporous structure of MgO-LPT. The CO2 uptake capacity of MgO-LPT is 3.79 mmol CO2.g1, which is 15 times that of MgO-TD. This study shows that the application of lime peel as a template for the synthesis of MgO adsorbents is a promising approach to achieve MgO adsorbents with enhanced surface area and thus increased CO2 capture performance. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: bio-templating; CO2 capture; Citrus aurantifolia; lime peel template; magnesium oxide
Funding: Universiti Teknologi Malaysia under contract Grant No. 16J64; Ministry of Higher Education Malaysia under contract FRGS/1/2019/STG07/UTM/02/8

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
Statistics: 294 174
  1. Ruhaimi, A.H., Aziz, M.A.A., Jalil, A.A. (2021). Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. Journal of CO2 Utilization, 43, 101357. DOI: 10.1016/j.jcou.2020.101357
  2. Modak, A., Jana, S. (2019). Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 276, 107–132. DOI: 10.1016/j.micromeso.2018.09.018
  3. Songolzadeh, M., Ravanchi, M.T., Soleimani, M. (2012). Carbon Dioxide Capture and Storage: A General Review on Adsorbents. International Journal of Chemical and Molecular Engineering, 6(10), 900–907. DOI: 10.5281/zenodo.1076266
  4. Azmi, A.A., Ruhaimi, A.H., Aziz, M.A.A. (2020). Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture. Materials Today Chemistry, 16, 100273. DOI: 10.1016/j.mtchem.2020.100273
  5. Hu, Y., Guo, Y., Sun, J., Li, H., Liu, W. (2019). Progress in MgO sorbents for cyclic CO2 capture: a comprehensive review. Journal of Materials Chemistry A, 7(35), 20103–20120. DOI: 10.1039/C9TA06930E
  6. Gao, W., Zhou, T., Gao, Y., Louis, B., O'Hare, D., Wang, Q. (2017). Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review. Journal of Energy Chemistry, 26(5), 830–838. DOI: 10.1016/j.jechem.2017.06.005
  7. Azmi, A.A., Ngadi, N., Kamaruddin, M.J., Zakaria Z.Y., Teh, L.P., Rozali Annuar, N.H., Setiabudi, H.D., Ab Aziz, M.A. (2019). Rapid one pot synthesis of mesoporous ceria nanoparticles by sol-gel method for enhanced CO2 capture. Chemical Engineering Transactions, 72, 403–408. DOI: 10.3303/CET1972068
  8. Wang, J., Li, M., Lu, P., Ning, P., Wang, Q. (2019). Kinetic study of CO2 capture on ternary nitrates modified MgO with different precursor and morphology. Chemical Engineering Journal, 392, 123752. DOI: 10.1016/j.cej.2019.123752
  9. Abarna, B., Preethi, T., Karunanithi, A., Rajarajeswari, G. (2016). Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide. Materials Science in Semiconductor Processing, 56, 243–250. DOI: 10.1016/j.mssp.2016.09.004
  10. Chen, G., Yang, X., Miao, K., Long, M., Deng, W. (2017). Root hairs as biotemplates for fabricating hollow double-layer CuO microtubes. Materials Letters, 194, 193–196. DOI: 10.1016/j.matlet.2017.02.035
  11. Pathak, P.D., Mandavgane, S.A., Kulkarni, B.D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, 113(3), 444–454. DOI: 10.18520/CS/V113/I03/444-454
  12. Selvam, N.C.S., Kumar, R.T., Kennedy, L.J., Vijaya, J.J. (2011). Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. Journal of Alloys and Compounds, 509(41), 9809–9815. DOI: 10.1016/j.jallcom.2011.08.032
  13. Jeon, H., Min, Y.J., Ahn, S.H., Hong, S.M., Shin, J.S., Kim, J.H., Lee, KB. (2012). Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 75–81. DOI: 10.1016/j.colsurfa.2012.08.009
  14. Bazhan, Z., Ghodsi, F.E., Mazloom, J. (2013). Effect of stabilizer on optical and structural properties of MgO thin films prepared by sol–gel method. Bulletin of Materials Science, 36(5), 899–905. DOI: 10.1007/s12034-013-0554-0
  15. Fuqua, P.D., Mansour, K., Alvarez Jr,D., Marder, S.R., Perry, J.W., Dunn, B.S. (1992). Synthesis and nonlinear optical properties of sol-gel materials containing phthalocyanines. In SPIE Proceedings: Sol-Gel Optics II, 1758. San Diego, CA, United States. DOI: 10.1117/12.132042
  16. Yang, N., Ning, P., Li, K., Wang, J. (2018). MgO-based adsorbent achieved from magnesite for CO2 capture in simulate wet flue gas. Journal of the Taiwan Institute of Chemical Engineers, 86, 73–80. DOI: 10.1016/j.jtice.2018.02.006
  17. Ding, Y.D., Song, G., Liao, Q., Zhu, X., Chen, R. (2016). Bench scale study of CO2 adsorption performance of MgO in the presence of water vapor. Energy, 112, 101–110. DOI: 10.1016/
  18. Kwon, H.K., Park, D.G. (2009). Infra-red study of surface carbonation on polycrystalline magnesium hydroxide. Bulletin of the Korean Chemical Society, 30(11), 2567–2573. DOI: 10.5012/bkcs.2009.30.11.2567
  19. Botha, A., Strydom, C. (2003). DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. Journal of Thermal Analysis and Calorimetry, 71(3), 987–996. DOI: 10.1023/A:1023355016208
  20. Li, P., Lin, Y., Chen, R., Li, W. (2020). Construction of a hierarchical-structured MgO-carbon nanocomposite from a metal–organic complex for efficient CO2 capture and organic pollutant removal. Dalton Transactions. DOI: 10.1039/D0DT00722F
  21. Sutapa, I.W., Wahab, A.W., Taba, P., La Nafie, N. (2018). Synthesis and structural profile analysis of the MgO nanoparticles produced through the sol-gel method followed by annealing process. Oriental Journal of Chemistry, 34(2), 1016. DOI: 10.13005/ojc/340252
  22. Guo, Y., Tan, C., Wang, P., Sun, J., Li, W., Zhao, C., Lu, P. (2020). Structure-performance relationships of magnesium-based CO2 adsorbents prepared with different methods. Chemical Engineering Journal, 379, 122277. DOI: 10.1016/j.cej.2019.122277
  23. Zhao, S., Wang, L., Wang, Y., Li, X. (2018). Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO. Journal of Physics and Chemistry of Solids, 116, 43–49. DOI: 10.1016/j.jpcs.2017.12.057
  24. Zhao, R., Zhang, X., Peng, S., Hong, P., Zou, T., Wang, Z., Xing, X., Wang, Y. (2020). Shaddock peels as bio-templates synthesis of Cd-doped SnO2 nanofibers: A high performance formaldehyde sensing material. Journal of Alloys and Compounds, 813, 152170. DOI: 10.1016/j.jallcom.2019.152170
  25. Tian, P., Han, X.Y., Ning, G.L., Fang, H.X., Ye, J.W., Gong, W.T., Lin, Y. (2013). Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Applied Materials and Interfaces, 5(23), 12411–12418. DOI: 10.1021/am403352y
  26. Montero, J., Isaacs, M., Lee, A., Lynam, J., Wilson, K. (2016). The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption. Surface Science, 646, 170–178. DOI: 10.1016/j.susc.2015.07.011
  27. Cornu, D., Guesmi, H., Krafft, J.M., Lauron-Pernot, H. (2012). Lewis Acido-Basic Interactions between CO2 and MgO Surface: DFT and DRIFT Approaches. The Journal of Physical Chemistry C, 116(11), 6645–6654. DOI: 10.1021/jp211171t
  28. Bhagiyalakshmi, M., Lee, J.Y., Jang, H.T. (2010). Synthesis of mesoporous magnesium oxide: its application to CO2 chemisorption. International Journal of Greenhouse Gas Control, 4(1), 51–56. DOI: 10.1016/j.ijggc.2009.08.001
  29. Tuan, V.A., Lee, C.H. (2018). Preparation of rod‐like MgO by simple precipitation method for CO2 capture at ambient temperature. Vietnam Journal of Chemistry, 56(2), 197–202. DOI: 10.1002/vjch.201800013
  30. Ho, K., Jin, S., Zhong, M., Vu, A.T., Lee, C.H. (2017). Sorption capacity and stability of mesoporous magnesium oxide in post-combustion CO2 capture. Materials Chemistry and Physics, 198, 154–161. DOI: 10.1016/j.matchemphys.2017.06.002
  31. Alkadhem, A.M., Elgzoly, M.AA., Onaizi, S.A. (2020). Novel Amine-Functionalized Magnesium Oxide Adsorbents for CO2 Capture at Ambient Conditions. Journal of Environmental Chemical Engineering, 8(4), 103968. DOI: 10.1016/j.jece.2020.103968

Last update: 2021-06-13 23:44:35

No citation recorded.

Last update: 2021-06-13 23:44:35

No citation recorded.