skip to main content

Evaluation of Corrosion Inhibition of 316L Stainless Steel by Permanganate Ions in Chloride Solution

Fahd Arboui1 scopus Sid Ahmed Amzert1scopus Mohamed Nadir Boucherit2scopus Salah Hanini3scopus Khaoula Ghezali4scopus

1Chemistry Department, Nuclear Research Centre of Birine, BO: 180 Ain Oussera, 17200, Djelfa, Algeria

2Nuclear Engineering Research and Development Unit, BO 399 Algiers,, Algeria

3Yahia Fares University, Ain-D’heb, 26000, Medea, Algeria

4 Crystallography Laboratory, Physics Department, Faculty of Exact Sciences, Mentouri Brothers University, Route Ain El Bey, Constantine 25000, Algeria

View all affiliations
Received: 2 Mar 2021; Revised: 8 Apr 2021; Accepted: 9 Apr 2021; Published: 30 Jun 2021; Available online: 12 Apr 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The efficiency of permanganates to inhibit the scale deposit captured the attention for more investigation on their role as corrosion inhibitor. In this article, the effect of permanganate as corrosion inhibitor on 316L stainless steel in NaCl solution is investigated. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) have been performed by varying the electrode stirring speed, the concentration of permanganate ions, pH and the temperature. The results show that the permanganate ions increase the cathodic and anodic currents under effect of stirring speed, due to oxygen reduction reaction and the reduction of permanganate ions. Electrochemical results indicate that the deposit of manganese oxide (MnO2) inhibits the pitting corrosion. The inhibition efficiency is up to 98 % for 104 mol.dm3 of permanganate. The temperature reduces the effectiveness of permanganates against pitting corrosion, the pitting potential shifts cathodically from +0.395 V vs. Saturated Calomel Electrode (SCE) at 298 K to +0.275 V vs. SCE at 343 K. Surface morphology of the deposit oxide films and electrode are studied by emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared and Differential Scanning Calorimetry. The analysis of the deposit layer by X-ray diffraction revealed the presence of δ-MnO2 form, with a crystallite size of 3.17 nm.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: pitting corrosion; stainless steel; permanganate; manganese oxide; corrosion inhibitor
Funding: Birine Nuclear Research Centre, Djelfa, Algeria

Article Metrics:

  1. Björn, W. (2018). Systemic thinking in support of safety management in nuclear power plants. Safety Science, 109, 201–218. DOI: 10.1016/j.ssci.2018.06.001
  2. Sung-Wan, K., Bub-Gyu, J., Dae-Gi, H., Min-Kyu, K. (2020). Ratcheting fatigue failure of a carbon steel pipe tee in a nuclear power plant using the deformation angle. Engineering Failure Analysis, 114, 104595. DOI: 10.1016/j.engfailanal.2020.104595
  3. Boucherit, M.N., Amzert, S., Arbaoui, F., Sari, A., Tebib, D. (2006). Study of the evolution of a semi-open cooling circuit. Anti-Corrosion Methods and Materials, 53(4), 212–217. DOI: 10.1108/00035590610678901
  4. Varga, K., Németh, Z., Szabó, A., Radó, K., Oravetz, D., Homonnay, Z., Schunk, J., Tilky, P., Kőrösi, F. (2006). Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part I. General corrosion state and morphology. Journal of Nuclear Materials, 348(1), 181–190. DOI: 10.1016/j.jnucmat.2005.09.012
  5. Boucherit, M.N., Amzert, S., Arbaoui, F., Hanini, S., Hammache, A. (2008). Pitting corrosion in presence of inhibitors and oxidants. Anti-Corrosion Methods and Materials, 55(3), 115–122. DOI: 10.1108/00035590810870419
  6. Zhao, J., Yang, Q., Zhang, C., Wang, Y. (2019). Corrosion of N80 Steel in a Concentrated Tetrapotassium Pyrophosphate Solution and Corrosion Control by Vanadates. International Journal of Electrochemical Science, 14, 6209–6222. DOI: 10.20964/2019.07.35
  7. Zhang, P., Chen, Y., Huang, H., Zhou, Y., Yan, F., Nie, G. (2020). Surface Passive Film Characteristic Of Q235 Carbon Steel In Pure Molybdate Solution. Surface Review and Letters, 27 (05), 1950179, DOI: 10.1142/S0218625X19501798
  8. Zhang, P., Chen, Y., Zhou, Y., Yan, F., Nie, G. (2021). Electrochemical Investigation of the Synergistic Effect Between Molybdate and Tungstate on Surface Passivation of Carbon Steel. International Journal of Electrochemical Science, 16, 151027. DOI: 10.20964/2021.01.49
  9. Agrawal, V.K., Bansal, A., Kumar, R., Kumawat, B.L., Mahajan, P. (2014). Potassium permanganate toxicity: A rare case with difficult airway management and hepatic damage. Indian Journal of Critical Care Medicine, 18(12), 819–821. DOI: 10.4103/0972-5229.146318
  10. Sung-Mao, H., Han, L., Huan-Wen, C., Siao-Ying, C., Chao-Sung, L. (2021). Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg–Li alloy. Journal of Materials Research and Technology, 11, 1953–1968. DOI: 10.1016/j.jmrt.2021.02.050
  11. Madden, S.B., Scully, J.R. (2014). Inhibition of AA2024-T351 corrosion using permanganate. Journal of the Electrochemical Society, 161(3), C162–C175. DOI: 10.1149/2.075403jes
  12. Sun, B., Zhang, Y., Gong, Z., Zhang, J., Zhang, J. (2021). Reducing substances-enhanced degradation of pollutants by permanganate: The role of in situ formed colloidal MnO2. Chemosphere, 130203. DOI: 10.1016/j.chemosphere.2021.130203
  13. Tazwar, G., Devra, V. (2020). Soluble colloidal manganese dioxide: Formation, characterization and application in oxidative kinetic study of ciprofloxacin. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 74–83. DOI: 10.9767/bcrec.15.1.5436.74-83
  14. Subramanian, V., Chandramohan, P., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V. (2007). Corrosion of cupronickel alloy in permanganate under acidic condition. Corrosion Science, 49(2), 620–636. DOI: 10.1016/j.corsci.2006.06.001
  15. Osipenko, M.A., Kharitonov, D.S., Makarova, I.V., Wrzesińska, A., Kurilo, I.I. (2020). The Effect of Sealing with Potassium Permanganate on Corrosion Resistance of Anodized AD31 Aluminum Alloy. Protection of Metals and Physical Chemistry of Surfaces, 56, 990–997. DOI: 10.1134/S2070205120050214
  16. Yanqi, W., Gang, K. (2020). Corrosion inhibition of galvanized steel by MnO4- ion as a soluble inhibitor in simulated fresh concrete environment. Construction and building materials, 257, 119532. DOI: 10.1016/j.conbuildmat.2020.119532
  17. Amzert, S.A., Hanini, S., Boucherit, M.N. (2013). Influence of permanganate reduction on CaCO3 crystals’ growth on a rotating metal surface. Journal of Crystal Growth, 382, 15–20. DOI: 10.1016/j.jcrysgro.2013.07.033
  18. Wang, Z., Seyeux, A., Zanna, S., Maurice, V., Marcus, P. (2020). Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation. Electrochimica Acta, 329, 135159. DOI: 10.1016/j.electacta.2019.135159
  19. Orouji, S. M., Naderi, R., Mahdavian, M. (2020). Controlled oxidation of mild steel by potassium permanganate solution to enhance protective functioning of silane coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125251. DOI: 10.1016/j.colsurfa.2020.125251
  20. Cotton, F.A., Wilkinson G. (1980). Advanced Inorganic Chemistry, third ed., New York: John Wiley and Sons
  21. Kuznetsov, Y.I. (2000). Corrosion inhibitors in conversion coatings. II. Protection of Metals, 36(2), 128–134. DOI: 10.1007/BF02758335
  22. Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solution. Edition NACE
  23. Boytsova, O.V., Shekunova, T.O., Baranchikov, A.E. (2015). Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment. Russian Journal of Inorganic Chemistry, 60(5), 546–551. DOI: 10.1134/S0036023615050022
  24. Yan, J., Wei, T., Cheng, J., Fan, Z., Zhang, M. (2010). Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Materials Research Bulletin, 45(2), 210–215. DOI: 10.1016/j.materresbull.2009.09.016
  25. Marafatto, F.F., Lanson, B., Peña, J. (2018). Crystal growth and aggregation in suspensions of δ-MnO2 nanoparticles: implications for surface reactivity. Environmental Science: Nano, 5(2), 497–508. DOI: 10.1039/C7EN00817A
  26. Jin, H., Yuan, J., Hao, H., Ji, Z., Liu, M., Hou, S. (2013). The exploration of a new adsorbent as MnO2 modified expanded graphite. Materials Letters, 110, 69–72. DOI: 10.1016/j.matlet.2013.07.042
  27. Abdeen, D.H., Atieh, M.A., Merzougui, B. (2021). Corrosion Behaviour of 316L Stainless Steel in CNTs–Water Nanofluid: Effect of Temperature. Materials, 14(1), 119. DOI: 10.3390/ma14010119
  28. Wang, Y., Wu, W., Cheng, L., He, P., Wang, C., Xia, Y. (2008). A Polyaniline‐Intercalated Layered Manganese Oxide Nanocomposite Prepared by an Inorganic/Organic Interface Reaction and Its High Electrochemical Performance for Li Storage. Advanced Materials, 20(11), 2166–2170. DOI: 10.1002/adma.200701708
  29. Dubal, D.P., Lokhande, C.D. (2013). Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping. Ceramics International, 39(1), 415–423. DOI: 10.1002/adma.200701708
  30. Lili, W.U., Youshi, W.U., Yuanchang, S.H.I., Huiying, W.E.I. (2006). Synthesis of ZnO nanorods and their optical absorption in visible-light region. Rare Metals, 25(1), 68–73. DOI: 10.1016/S1001-0521(06)60017-X
  31. Arbaoui, F., Boucherit, M.N. (2014). Comparison of two Algerian bentonites: Physico-chemical and retention capacity study. Applied Clay Science, 91, 6–11. DOI: 10.1016/j.clay.2014.02.001
  32. Dose, W.M., Donne, S.W. (2011). Manganese dioxide structural effects on its thermal decomposition. Materials Science and Engineering: B, 176(15), 1169–1177. DOI: 10.1016/j.mseb.2011.06.007
  33. Terayama, K., Ikeda, M. (1983). Study on thermal decomposition of MnO2 and Mn2O3 by thermal analysis. Transactions of the Japan Institute of Metals, 24(11), 754–758. DOI: 10.1016/j.mseb.2011.06.007

Last update: 2021-06-13 16:50:41

No citation recorded.

Last update: 2021-06-13 16:50:41

No citation recorded.