skip to main content

Role of Microalgae as a Source for Biofuel Production in the Future: A Short Review

Mustafa Jawad Nuhma1scopus Hajar Alias1scopus Ali A. Jazie2scopus Muhammad Tahir1 scopus

1Department of Chemical Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia., Malaysia

2Chemical Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Qadisiyah, Al-Diwaniyah, Iraq, Iraq

Received: 2 Mar 2021; Revised: 6 Apr 2021; Accepted: 6 Apr 2021; Published: 30 Jun 2021; Available online: 8 Apr 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The continued burning of fossil fuels since the beginning of the last century led to higher emissions of greenhouse gases and thus leads to global warming. Microalgae are one of the most important sources of green hydrocarbons because this type of algae has a high percentage of lipids and has rapid growth, consumes the carbon dioxide in large quantities. Besides, the cultivation of these types of algae does not require arable land. This review aims to explain the suitability of microalgae as a biofuel source depending on the fat content, morphology, and other parameters and their effect on the conversion processes of microalgae oil into biofuels by different zeolite catalytic reactions. It also discusses in detail the major chemical processes that convert microalgae oil to chemical products. This review sheds light on one of the most important groups of microalgae (Chlorella vulgaris microalgae). This review includes a historical overview and a comprehensive description of the structure needed to develop this type of algae. The most important methods of production, their advantages and disadvantages are also deliberated in this work. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Biofuels; Zeolite; Rare earth metals; Microalgae; Deoxygenation
Funding: Malaysian Ministry of Education (MOE); Universiti Teknologi Malaysia under contract Q JI30000.2546.19H46)

Article Metrics:

  1. Baamran, K.S., Tahir, M., Mohamed, M., Khoja, A.H. (2020). Effect of support size for stimulating hydrogen production in phenol steam reforming using Ni-embedded TiO2 nanocatalyst. Journal of Environmental Chemical Engineering, 8(1), 103604. DOI: 10.1016/j.jece.2019.103604
  2. Biller, P., Ross, A. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215–225. DOI: 10.1016/j.biortech.2010.06.028
  3. Srifa, A., Chaiwat, W., Pitakjakpipop, P., Anutrasakda, W., Faungnawakij, K. (2019). Advances in bio-oil production and upgrading technologies. In M. Rai, A.P. Ingle (Editors) Sustainable Bioenergy, Elsevier. pp. 167–198. DOI: 10.1016/B978-0-12-817654-2.00006-X
  4. Peng, B., Yao, Y., Zhao, C., Lercher, J.A. (2012). Towards quantitative conversion of microalgae oil to diesel‐range alkanes with bifunctional catalysts. Angewandte Chemie International Edition, 51(9), 2072–2075. DOI: 10.1002/anie.201106243
  5. Voloshin, R.A., Rodionova, M.V., Zharmukhamedov, S.K., Veziroglu, T.N., Allakhverdiev, S.I. (2016). Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 41(39), 17257–17273. DOI: 10.1016/j.ijhydene.2016.07.084
  6. Choo, M.-Y., Oi, L.E., Ling, T.C., Ng, E.-P., Lee, H.V., Juan, J.C. (2020). Conversion of Microalgae Biomass to Biofuels. In Abu Yousuf (Editor) Microalgae Cultivation for Biofuels Production. Elsevier. pp. 149–161. DOI: 10.1016/B978-0-12-817536-1.00010-2
  7. Ansah, E., Wang, L., Zhang, B., Shahbazi, A. (2018). Catalytic pyrolysis of raw and hydrothermally carbonized Chlamydomonas debaryana microalgae for denitrogenation and production of aromatic hydrocarbons. Fuel, 228, 234–242. DOI: 10.1016/j.fuel.2018.04.163
  8. Zainan, N.H., Srivatsa, S.C., Li, F., Bhattacharya, S. (2018). Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris. Fuel, 223, 12–19. DOI: 10.1016/j.fuel.2018.02.166
  9. Du, X., Gao, X., Zhang, H., Li, X., Liu, P. (2013). Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites. Catalysis Communications, 35, 17–22. DOI: 10.1016/j.catcom.2013.02.010
  10. Baugis, G.L., Brito, H.F., de Oliveira, W., de Castro, F.R., Sousa-Aguiar, E.F. (2001). The luminescent behavior of the steamed EuY zeolite incorporated with vanadium and rare earth passivators. Microporous and Mesoporous Materials, 49(1–3), 179–187. DOI: 10.1016/S1387-1811(01)00416-4
  11. Trigueiro, F., Monteiro, D., Zotin, F., Sousa-Aguiar, E.F. (2002). Thermal stability of Y zeolites containing different rare earth cations. Journal of Alloys and Compounds, 344(1–2), 337–341. DOI: 10.1016/S0925-8388(02)00381-X
  12. Nery, J.G., Giotto, M.V., Mascarenhas, Y.P., Cardoso, D., Zotin, F.M.Z., Sousa-Aguiar, E. F. (2000). Rietveld refinement and solid state NMR study of Nd-, Sm-, Gd-, and Dy-containing Y zeolites. Microporous and Mesoporous Materials, 41(1–3), 281–293. DOI: 10.1016/S1387-1811(00)00304-8
  13. Sousa-Aguiar, E.F., Camorim, V.L.D., Zotin, F.M.Z., dos Santos, R.L.C. (1998). A Fourier transform infrared spectroscopy study of La-, Nd-, Sm-, Gd-and Dy-containing Y zeolites. Microporous and Mesoporous Materials, 25(1–3), 25–34. DOI: 10.1016/S1387-1811(98)00169-3
  14. Steen, E.J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., del Cardayre, S.B., Keasling, J.D. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463(7280), 559–562. DOI: 10.1038/nature08721
  15. Hannon, M., Gimpel, J., Tran, M., Rasala, B., Mayfield, S. (2010). Biofuels from algae: challenges and potential. Biofuels, 1(5), 763–784. DOI: 10.4155/bfs.10.44
  16. Pignolet, O., Jubeau, S., Vaca-Garcia, C., Michaud, P. (2013). Highly valuable microalgae: biochemical and topological aspects. Journal of Industrial Microbiology and Biotechnology, 40(8), 781–796. DOI: 10.1007/s10295-013-1281-7
  17. Yamamoto, M., Fujishita, M., Hirata, A., Kawano, S. (2004). Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). Journal of Plant Research, 117(4), 257–264. DOI: 10.1007/s10265-004-0154-6
  18. Němcová, Y., Kalina, T. (2000). Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiniana compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Archiv fur Hydrobiologie-Supplementband Only, 136, 95–106. DOI: 10.1127/algol_stud/100/2000/95
  19. Burczyk, J., Hesse, M. (1981). The ultrastructure of the outer cell wall-layer ofChlorella mutants with and without sporopollenin. Plant Systematics and Evolution, 138(1-2), 121–137. DOI: 10.1007/BF00984613
  20. Kuchitsu, K., Oh-Hama, T., Tsuzuki, M., Miyachi, S. (1987). Detection and characterization of acidic compartments (vacuoles) in Chlorella vulgaris 11h cells by 31 P-in vivo NMR spectroscopy and cytochemical techniques. Archives of Microbiology, 148(2), 83–87. DOI: 10.1007/BF00425353
  21. Chao, L. (2000). The meaning of life. BioScience, 50(3), 245–250. DOI: 10.1641/0006-3568(2000)050[0245:TMOL]2.3.CO;2
  22. Ashforth, B.E., Harrison, S.H., Corley, K.G. (2008). Identification in organizations: An examination of four fundamental questions. Journal of Management, 34(3), 325–374. DOI: 10.1177/0149206308316059
  23. Brennan, L., Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. DOI: 10.1016/j.rser.2009.10.009
  24. Přibyl, P., Cepák, V., Zachleder, V. (2013). Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. Journal of Applied Phycology, 25(2), 545–553. DOI: 10.1007/s10811-012-9889-y
  25. Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146–1151. DOI: 10.1016/j.cep.2009.03.006
  26. Lv, J.-M., Cheng, L.-H., Xu, X.-H., Zhang, L., Chen, H.-L. (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101(17), 6797–6804. DOI: 10.1016/j.biortech.2010.03.120
  27. Widjaja, A., Chien, C.-C., Ju, Y.-H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13–20. DOI: 10.1016/j.jtice.2008.07.007
  28. Liu, Z.-Y., Wang, G.-C., Zhou, B.-C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717–4722. DOI: 10.1016/j.biortech.2007.09.073
  29. Richmond, A., Boussiba, S., Vonshak, A., Kopel, R. (1993). A new tubular reactor for mass production of microalgae outdoors. Journal of Applied Phycology, 5(3), 327–332. DOI: 10.1007/BF02186235
  30. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. 10.1016/j.biotechadv.2007.02.001
  31. Kojima, E., Zhang, K. (1999). Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. Journal of Bioscience and Bioengineering, 87(6), 811–815. DOI: 10.1016/S1389-1723(99)80158-3
  32. Degen, J., Uebele, A., Retze, A., Schmid-Staiger, U., Trösch, W. (2001). A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Journal of Biotechnology, 92(2), 89–94. DOI: 10.1016/S0168-1656(01)00350-9
  33. Liang, Y., Sarkany, N., Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049. DOI: 10.1007/s10529-009-9975-7
  34. Martinez, F., Ascaso, C., Orus, M. (1991). Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions. Annals of Botany, 67(3), 239–245. DOI: 10.1093/oxfordjournals.aob.a088128
  35. Yeh, K.-L., Chang, J.-S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120–127. DOI: 10.1016/j.biortech.2011.11.103
  36. De-Bashan, L.E., Antoun, H., Bashan, Y. (2005). Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiology Ecology, 54(2), 197–203. DOI: 10.1016/j.femsec.2005.03.014
  37. De-Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K., Bustillos, J.J. (2002). Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology, 48(6), 514–521. DOI: 10.1139/w02-051
  38. Munoz, R., Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water research, 40(15), 2799–2815. DOI: 10.1016/j.watres.2006.06.011
  39. Lebsky, V.K., Gonzalez-Bashan, L.E., Bashan, Y. (2001). Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology, 47(1), 1–8. DOI: 10.1139/w00-115
  40. Leupold, M., Hindersin, S., Gust, G., Kerner, M., Hanelt, D. (2013). Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. Journal of Applied Phycology, 25(2), 485–495. DOI: 10.1007/s10811-012-9882-5
  41. Morris, H.J., Almarales, A., Carrillo, O., Bermúdez, R.C. (2008). Utilisation of Chlorellavulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresource Technology, 99(16), 7723–7729. DOI: 10.1016/j.biortech.2008.01.080
  42. Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., Pontalier, P.-Y. (2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology, 25(2), 523–529. DOI: 10.1007/s10811-012-9886-1
  43. Servaites, J.C., Faeth, J.L., Sidhu, S.S. (2012). A dye binding method for measurement of total protein in microalgae. Analytical Biochemistry, 421(1), 75–80. DOI: 10.1016/j.ab.2011.10.047
  44. Seyfabadi, J., Ramezanpour, Z., Khoeyi, Z.A. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23(4), 721–726. DOI: 10.1007/s10811-010-9569-8
  45. Safi, C., Charton, M., Pignolet, O., Pontalier, P.-Y., Vaca-Garcia, C. (2013). Evaluation of the protein quality of Porphyridium cruentum. Journal of Applied Phycology, 25(2), 497–501. DOI: 10.1007/s10811-012-9883-4
  46. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K. (2010). Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. DOI: 10.1016/j.rser.2009.10.003
  47. Shaaban, M.M. (2001). Green microalgae water extract as foliar feeding to wheat plants. Pakistan Journal of Biological Sciences, 4(6), 628–632. DOI: 10.3923/pjbs.2001.628.632
  48. Bajguz, A. (2000). Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38(3), 209–215. DOI: 10.1016/S0981-9428(00)00733-6
  49. Rausch, T. (1981). The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 78(3), 237–251. DOI: 10.1007/BF00008520
  50. López, C.V.G., García, M.d.C.C., Fernández, F.G.A., Bustos, C.S., Chisti, Y., Sevilla, J.M.F. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 101(19), 7587–7591. DOI: 10.1016/j.biortech.2010.04.077
  51. Lourenço, S.O., Barbarino, E., De‐Paula, J.C., Pereira, L.O.d.S., Marquez, U.M.L. (2002). Amino acid composition, protein content and calculation of nitrogen‐to‐protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233–241. DOI: 10.1046/j.1440-1835.2002.00278.x
  52. Lourenço, S.O., Barbarino, E., Lavín, P.L., Lanfer Marquez, U.M., Aidar, E. (2004). Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 39(1), 17–32. DOI: 10.1080/0967026032000157156
  53. Lourenço, S.O., Barbarino, E., Marquez, U. M.L., Aidar, E. (1998). Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen‐to‐protein conversion factors. Journal of Phycology, 34(5), 798–811. DOI: 10.1046/j.1529-8817.1998.340798.x
  54. Becker, E.W. (1994). Microalgae: biotechnology and microbiology. Cambridge University Press
  55. Borghans, L., Duckworth, A.L., Heckman, J.J., Ter Weel, B. (2008). The economics and psychology of personality traits. Journal of Human Resources, 43(4), 972–1059. DOI: 10.3368/jhr.43.4.972
  56. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621–639. DOI: 10.1111/j.1365-313X.2008.03492.x
  57. Bharadwaj, S.V., Ram, S., Pancha, I., Mishra, S. (2020). Recent Trends in Strain Improvement for Production of Biofuels From Microalgae. In Abu Yousuf (Editor) Microalgae Cultivation for Biofuels Production. Elsevier. pp. 211–225. DOI: 10.1016/B978-0-12-817536-1.00014-X
  58. Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X., Dou, C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology, 164(7), 1215–1224. DOI: 10.1007/s12010-011-9207-1
  59. Přibyl, P., Cepák, V., Zachleder, V. (2012). Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Applied Microbiology and Biotechnology, 94(2), 549–561. DOI: 10.1007/s00253-012-3915-5
  60. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75–S77. DOI: 10.1016/j.biortech.2009.03.058
  61. Mercer, P., Armenta, R.E. (2011). Developments in oil extraction from microalgae. European Journal of Lipid Science and Technology, 113(5), 539–547. DOI: 10.1002/ejlt.201000455
  62. Phukan, M.M., Chutia, R.S., Konwar, B., Kataki, R. (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307–3312. DOI: 10.1016/j.apenergy.2010.11.026
  63. Olmstead, I.L., Hill, D.R., Dias, D.A., Jayasinghe, N.S., Callahan, D.L., Kentish, S.E., Scales, P.J., Martin, G.J. (2013). A quantitative analysis of microalgal lipids for optimization of biodiesel and omega‐3 production. Biotechnology and Bioengineering, 110(8), 2096–2104. DOI: 10.1002/bit.24844
  64. Stephenson, A.L., Dennis, J.S., Howe, C.J., Scott, S.A., Smith, A.G. (2010). Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels, 1(1), 47–58. DOI: 10.4155/bfs.09.1
  65. Lordan, S., Ross, R.P., Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine drugs, 9(6), 1056–1100. DOI: 10.3390/md9061056
  66. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.t., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. DOI: 10.1021/ac60111a017
  67. Shi, Y., Sheng, J., Yang, F., Hu, Q. (2007). Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food chemistry, 103(1), 101–105. DOI: 10.1016/j.foodchem.2006.07.028
  68. Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331–3335. DOI: 10.1016/j.apenergy.2011.03.012
  69. Fernandes, B., Dragone, G., Abreu, A.P., Geada, P., Teixeira, J., Vicente, A. (2012). Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods. Journal of Applied Phycology, 24(5), 1203–1208. DOI: 10.1007/s10811-011-9761-5
  70. Takeda, H. (1988b). Classification of Chlorella strains by means of the sugar components of the cell wall. Biochemical Systematics and Ecology, 16(4), 367–371. DOI: 10.1016/0305-1978(88)90027-0
  71. Takeda, H. (1988a). Classification of Chlorella strains by cell wall sugar composition. Phytochemistry, 27(12), 3823–3826. DOI: 10.1016/0031-9422(88)83025-5
  72. Takeda, H. (1991). Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). Journal of Phycology, 27(2), 224–232. DOI: 10.1111/j.0022-3646.1991.00224.x
  73. Takeda, H. (1993). Chemical composition of cell walls as a taxonomical marker. Journal of Plant Research, 106(3), 195–200. DOI: 10.1007/BF02344585
  74. Takeda, H., Hirokawa, T. (1984). Studies on the Cell Wall of Chlorella V.: Comparison of the Cell Wall Chemical Compositions in Strains of Chlorella ellipsoidea. Plant and Cell Physiology, 25(2), 287–295. DOI: 10.1093/oxfordjournals.pcp.a076713
  75. Chacón‐Lee, T., González‐Mariño, G.E. (2010). Microalgae for “healthy” foods—possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675. DOI: 10.1111/j.1541-4337.2010.00132.x
  76. Singh, J., Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), 2596–2610. DOI: 10.1016/j.rser.2010.06.014
  77. Mendes, R.L., Nobre, B.P., Cardoso, M.T., Pereira, A.P., Palavra, A.F. (2003). Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta, 356, 328–334. DOI: 10.1016/S0020-1693(03)00363-3
  78. Kitada, K., Machmudah, S., Sasaki, M., Goto, M., Nakashima, Y., Kumamoto, S., Hasegawa, T. (2009). Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(5), 657–661. DOI: 10.1002/jctb.2096
  79. Kim, S.M., Jung, Y.-J., Kwon, O.-N., Cha, K.H., Um, B.-H., Chung, D., Pan, C.-H. (2012). A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology, 166(7), 1843–1855. DOI: 10.1007/s12010-012-9602-2
  80. Kong, W., Liu, N., Zhang, J., Yang, Q., Hua, S., Song, H., Xia, C. (2014). Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. Journal of Food Science and Technology, 51(9), 2006–2013. DOI: 10.1007/s13197-012-0706-z
  81. Fernández-Sevilla, J.M., Fernández, F.G.A., Grima, E.M. (2012). Obtaining lutein-rich extract from microalgal biomass at preparative scale. In José-Luis Barredo (Editor) Microbial Carotenoids from Bacteria and Microalgae. Methods in Molecular Biology (Methods and Protocols). Humana Press, Totowa, NJ. pp. 307–314. DOI: 10.1007/978-1-61779-879-5_19
  82. Granado, F., Olmedilla, B., Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. British Journal of Nutrition, 90(3), 487–502. DOI: 10.1079/bjn2003927
  83. Cha, K.H., Koo, S.Y., Lee, D.-U. (2008). Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. Journal of Agricultural and Food Chemistry, 56(22), 10521–10526. DOI: 10.1021/jf802111x
  84. Tanaka, K., Konishi, F., Himeno, K., Taniguchi, K., Nomoto, K. (1984). Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunology Immunotherapy, 17(2), 90–94. DOI: 10.1007/BF00200042
  85. Cha, K.H., Lee, H.J., Koo, S.Y., Song, D.-G., Lee, D.-U., Pan, C.-H. (2009). Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58(2), 793–797. DOI: 10.1021/jf902628j
  86. Görs, M., Schumann, R., Hepperle, D., Karsten, U. (2010). Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. Journal of Applied Phycology, 22(3), 265–276. DOI: 10.1007/s10811-009-9455-4
  87. Li, H.-B., Jiang, Y., Chen, F. (2002). Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. Journal of Agricultural and Food Chemistry, 50(5), 1070–1072. DOI: 10.1021/jf010220b
  88. Hoch, W.A., Zeldin, E.L., McCown, B.H. (2001). Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology, 21(1), 1–8. DOI: 10.1093/treephys/21.1.1
  89. Panahi, Y., Pishgoo, B., Jalalian, H.R., Mohammadi, E., Taghipour, H.R., Sahebkar, A., Abolhasani, E. (2012). Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open‐label clinical trial. Nutrition & Dietetics, 69(1), 13–19. DOI: 10.1111/j.1747-0080.2011.01569.x
  90. Maruyama, I., Nakao, T., Shigeno, I., Ando, Y., Hirayama, K. (1997). Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 358, 133–138. DOI: 10.1023/A:1003116003184
  91. Tokuşoglu, Ö. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68(4), 1144–1148. DOI: 10.1111/j.1365-2621.2003.tb09615.x
  92. Lin, T.-C., Chang, F.-H., Hsieh, J.-H., Chao, H.-R., Chao, M.-R. (2002). Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. Journal of Hazardous Materials, 95(1–2), 1–12. DOI: 10.1016/S0304-3894(02)00146-2
  93. King, J.W. (2003). Supercritical fluid chromatography (SFC)-global perspective and applications in lipid technology. Advances in Lipid Methodology, 5, 301–366. DOI: 10.1533/9780857097941.301
  94. Yeh, K.L., Chang, J.S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP‐31: Implications for biofuels. Biotechnology Journal, 6(11), 1358–1366. DOI: 10.1002/biot.201000433
  95. Ochiai, S., Hase, E. (1970). Studies on chlorophyll formation in Chlorella protothecoides I. Enhancing effects of light and added δ-aminoIevulinic acid, and suppressive effect of glucose on chlorophyll formation. Plant and Cell Physiology, 11(4), 663–673. DOI: 10.1093/oxfordjournals.pcp.a074552
  96. Ogawa, T., Aiba, S. (1981). Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and Bioengineering, 23(5), 1121–1132. DOI: 10.1002/bit.260230519
  97. Mallick, N., Mandal, S., Singh, A.K., Bishai, M., Dash, A. (2012). Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology & Biotechnology, 87(1), 137–145. DOI: 10.1002/jctb.2694
  98. Kotrbáček, V., Doubek, J., Doucha, J. (2015). The chlorococcalean alga Chlorella in animal nutrition: a review. Journal of Applied Phycology, 27(6), 2173–2180. DOI: 10.1007/s10811-014-0516-y
  99. Patino, R., Janssen, M., von Stockar, U. (2007). A study of the growth for the microalga Chlorella vulgaris by photo‐bio‐calorimetry and other on‐line and off‐line techniques. Biotechnology and Bioengineering, 96(4), 757–767. DOI: 10.1002/bit.21182
  100. Packer, M. (2009). Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 37(9), 3428–3437. DOI: 10.1016/j.enpol.2008.12.025
  101. Cheirsilp, B., Srinuanpan, S., Mandik, Y.I. (2020). Efficient Harvesting of Microalgal biomass and Direct Conversion of Microalgal Lipids into Biodiesel. In Microalgae Cultivation for Biofuels Production. Elsevier. pp. 83–96. DOI: 10.1016/B978-0-12-817536-1.00006-0
  102. Dabbs, D.M., Mulders, N., Aksay, I.A. (2006). Solvothermal removal of the organic template from L3 (“sponge”) templated silica monoliths. Journal of Nanoparticle Research, 8(5), 603–614. DOI: 10.1007/s11051-005-9063-4
  103. Hileman, J.I., Donohoo, P.E., Stratton, R.W. (2010). Energy content and alternative jet fuel viability. Journal of Propulsion and Power, 26(6), 1184–1196. DOI: 10.2514/1.46232
  104. Davis, R., Biddy, M.J., Tan, E., Tao, L., Jones, S.B. (2013). Biological conversion of sugars to hydrocarbons technology pathway. URL: https://www.energy.gov/
  105. Efremenko, E., Nikolskaya, A., Lyagin, I., Senko, O., Makhlis, T., Stepanov, N., Varfolomeev, S. (2012). Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresource technology, 114, 342-348
  106. Kumar, P., Yenumala, S.R., Maity, S.K., Shee, D. (2014). Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General, 471, 28–38. DOI: 10.1016/j.apcata.2013.11.021
  107. Ayodele, O., Farouk, H.U., Mohammed, J., Uemura, Y., Daud, W.M.A.W. (2015). Hydrodeoxygenation of oleic acid into n-and iso-paraffin biofuel using zeolite supported fluoro-oxalate modified molybdenum catalyst: Kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 50, 142–152. DOI: 10.1016/j.jtice.2014.12.014
  108. Harnos, S., Onyestyák, G., Kalló, D. (2012). Hydrocarbons from sunflower oil over partly reduced catalysts. Reaction Kinetics, Mechanisms and Catalysis, 106(1), 99–111. DOI: 10.1007/s11144-012-0424-6
  109. Ha, L., Mao, J., Zhou, J., Zhang, Z.C., Zhang, S. (2009). Skeletal isomerization of unsaturated fatty acids on beta zeolites: effects of calcination temperature and additives. Applied Catalysis A: General, 356(1), 52–56. DOI: 10.1016/j.apcata.2008.12.018
  110. Twaiq, F.A., Zabidi, N.A., Bhatia, S. (1999). Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Industrial & Engineering Chemistry Research, 38(9), 3230–3237. DOI: 10.1021/ie980758f
  111. Li, T., Cheng, J., Huang, R., Zhou, J., Cen, K. (2016). Conversion pathways of palm oil into jet biofuel catalyzed by mesoporous zeolites. RSC Advances, 6(106), 103965–103972. DOI: 10.1039/C6RA22500D
  112. Veses, A., Puértolas, B., Callén, M., García, T. (2015). Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties. Microporous and Mesoporous Materials, 209, 189–196. DOI: 10.1016/j.micromeso.2015.01.012
  113. Aho, A., Kumar, N., Lashkul, A., Eränen, K., Ziolek, M., Decyk, P., Salmi, T., Holmbom, B., Hupa, M., Murzin, D.Y. (2010). Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel, 89(8), 1992–2000. DOI: 10.1016/j.fuel.2010.02.009
  114. Shen, D., Jin, W., Hu, J., Xiao, R., Luo, K. (2015). An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renewable and Sustainable Energy Reviews, 51, 761–774. DOI: 10.1016/j.rser.2015.06.054
  115. Sousa-Aguiar, E.F., Trigueiro, F.E., Zotin, F.M.Z. (2013). The role of rare earth elements in zeolites and cracking catalysts. Catalysis Today, 218–219, 115–122. DOI: 10.1016/j.cattod.2013.06.021
  116. Wakui, K., Satoh, K.-i., Sawada, G., Shiozawa, K., Matano, K.-i., Suzuki, K., Hayakawa, T., Murata, K., Yoshimura, Y., Mizukami, F. (1999). Catalytic cracking of n-butane over rare earth-loaded HZSM-5 catalysts. Journal of The Japan Petroleum Institute, 42(5), 307–314. DOI: 10.1016/S0167-2991(99)80245-6
  117. Jung, J.S., Kim, T.J., Seo, G. (2004). Catalytic cracking of n-octane over zeolites with different pore structures and acidities. Korean Journal of Chemical Engineering, 21(4), 777–781. DOI: 10.1007/BF02705520
  118. Hsu, C.-Y., Heimbuch, C., Armes, C., Gates, B. (1992). A highly active solid superacid catalyst for n-butane isomerization: a sulfated oxide containing iron, manganese and zirconium. Journal of the Chemical Society, Chemical Communications, (22), 1645–1646. DOI: 10.1039/C39920001645
  119. Rahimi, N., Karimzadeh, R. (2011). Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 398(1–2), 1–17. DOI: 10.1016/j.apcata.2011.03.009
  120. Zhang, F., Fang, Z., Wang, Y.-T. (2015). Biodiesel production directly from oils with high acid value by magnetic Na2SiO3@Fe3O4/C catalyst and ultrasound. Fuel, 150, 370–377. DOI: 10.1016/j.fuel.2015.02.032
  121. Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E., Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource Technology, 102(22), 10163–10172. DOI: 10.1016/j.biortech.2011.08.030
  122. Alalwan, H.A., Alminshid, A.H., Aljaafari, H.A. (2019). Promising evolution of biofuel generations. Subject review. Renewable Energy Focus, 28, 127–139. DOI: 10.1016/j.ref.2018.12.006
  123. Chang, S.H. (2018). Bio-oil derived from palm empty fruit bunches: Fast pyrolysis, liquefaction and future prospects. Biomass and Bioenergy, 119, 263–276. DOI: 10.1016/j.biombioe.2018.09.033

Last update: 2021-06-13 17:47:05

No citation recorded.

Last update: 2021-06-13 17:47:05

No citation recorded.