skip to main content

Catalytic Pyrolysis of Municipal Solid Waste: Effects of Pyrolysis Parameters

1Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

2Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

3King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia

4 Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 7 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

View all affiliations
Received: 2 Mar 2021; Revised: 17 Mar 2021; Accepted: 17 Mar 2021; Available online: 18 Mar 2021; Published: 30 Jun 2021.
Editor(s): Istadi Istadi, Mohd Asmadi Mohammed Yussuf, Salman Raza Naqvi, Nor Saidina-Amin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Burning municipal solid waste (MSW) increases CO2, CH4, and SO2 emissions, leading to an increase in global warming, encouraging governments and researchers to search for alternatives. The pyrolysis process converts MSW to oil, gas, and char. This study investigated catalytic and noncatalytic pyrolysis of MSW to produce oil using MgO-based catalysts. The reaction temperature, catalyst loading, and catalyst support were evaluated. Magnesium oxide was supported on active carbon (AC) and Al2O3 to assess the role of support in MgO catalyst activity. The liquid yields varied from 30 to 54 wt% based on the experimental conditions. For the noncatalytic pyrolysis experiment, the highest liquid yield was 54 wt% at 500 °C. The results revealed that adding MgO, MgO/Al2O3, and MgO/AC declines the liquid yield and increases the gas yield. The catalysts exhibited significant deoxygenation activity, which enhances the quality of the pyrolysis oil and increases the heating value of the bio-oil. Of the catalysts that had high deoxygenation activity, MgO/AC had the highest relative yield. The loading of MgO/AC varied from 5 to 30 wt% of feed to the pyrolysis reactor. As the catalyst load increases, the liquid yield declines, while the gas and char yields increase. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Municipal Solid Waste; Pyrolysis; Bio-oil; Catalytic Pyrolysis; Waste Management
Funding: Scientific Research Deanship, Islamic University of Madinah

Article Metrics:

  1. Kumar, A., Samadder, S.R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422, doi: 10.1016/j.wasman.2017.08.046
  2. Li, Q., Faramarzi, A., Zhang, S., Wang, Y., Hu, X., Gholizadeh, M. (2020). Progress in catalytic pyrolysis of municipal solid waste. Energy Conversion and Management, 226, 113525, doi: 10.1016/j.enconman.2020.113525
  3. Almohamadi, H., Smith, K.J. (2020). Beneficial effect of adding AlOOH to the Al2O3 washcoat of a PdO catalyst for methane oxidation. The Canadian Journal of Chemical Engineering, 98, 281–293, doi: 10.1002/cjce.23605
  4. Wang, W., Gao, X., Li, T., Cheng, S., Yang, H., Qiao, Y. (2018). Stabilization of heavy metals in fly ashes from municipal solid waste incineration via wet milling. Fuel, 216, 153–159, doi: 10.1016/j.fuel.2017.11.045
  5. Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L. (2013). The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23, doi: 10.1016/j.jclepro.2012.05.032
  6. Cheng, S., Qiao, Y., Huang, J., Wang, W., Yu, Y., Xu, M. (2019). Effects of Ca and Na acetates on nitrogen transformation during sewage sludge pyrolysis. Proceedings of the Combustion Institute, 37, 2715–2722, doi: 10.1016/j.proci.2018.08.018
  7. Peng, Y., Chen, J., Lu, S., Huang, J., Zhang, M., Buekens, A., Li, X., Yan, J. (2016). Chlorophenols in municipal solid waste incineration: a review. Chemical Engineering Journal, 292, 398–414, doi: 10.1016/j.cej.2016.01.102
  8. Onel, O., Niziolek, A.M., Hasan, M.F., Floudas, C.A. (2014). Municipal solid waste to liquid transportation fuels–Part I: Mathematical modeling of a municipal solid waste gasifier. Computers & Chemical Engineering, 71, 636–647, doi: 10.1016/j.compchemeng.2014.03.008
  9. Sipra, A.T., Gao, N., Sarwar, H. (2018). Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Processing Technology, 175, 131–147, doi: 10.1016/j.fuproc.2018.02.012
  10. Luo, S., Xiao, B., Hu, Z., Liu, S., Guan, Y., Cai, L. (2010). Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor. Bioresource Technology, 101, 6517–6520, doi: 10.1016/j.biortech.2010.03.060
  11. Thamavithya, M., Dutta, A. (2008). An investigation of MSW gasification in a spout-fluid bed reactor. Fuel Processing Technology, 89, 949–957, doi: 10.1016/j.fuproc.2008.03.003
  12. Ateş, F., Miskolczi, N., Borsodi, N. (2013). Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties. Bioresource Technology, 133, 443–454, doi: 10.1016/j.biortech.2013.01.112
  13. AlMohamadi, H., Gunukula, S., DeSisto, W.J., Wheeler, M.C. (2018). Formate‐assisted pyrolysis of biomass: an economic and modeling analysis. Biofuels, Bioproducts and Biorefining, 12, 45–55, doi: 10.1002/bbb.1827
  14. Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., Aroua, M.K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308–326, doi: 10.1016/j.enconman.2016.02.037
  15. Nizami, A., Rehan, M., Ouda, O.K., Shahzad, K., Sadef, Y., Iqbal, T., Ismail, I.M. (2015). An argument for developing waste-to-energy technologies in Saudi Arabia. Chemical Engineering Transactions, 45, 337–342, doi: 10.3303/CET1545057
  16. Seth, D., Sarkar, A. (2004). Thermal pyrolysis of polypropylene: effect of reflux-condenser on the molecular weight distribution of products. Chemical Engineering Science, 59, 2433–2445, doi: 10.1016/j.ces.2004.03.008
  17. Jung, S., Kim, S., Kim, J. (2013). The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile–butadiene–styrene using a fluidized bed reactor. Fuel Processing Technology, 116, 123–129, doi: 10.1016/j.fuproc.2013.05.004
  18. Islam, M.N., Beg, M.R.A., Islam, M.R. (2005). Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization. Renewable Energy, 30, 413–420, doi: 10.1016/j.renene.2004.05.002
  19. Sørum, L., Grønli, M., Hustad, J. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80, 1217–1227, doi: 10.1016/S0016-2361(00)00218-0
  20. Pütün, E. (2010). Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 35, 2761–2766, doi: 10.1016/j.energy.2010.02.024
  21. Miandad, R., Nizami, A., Rehan, M., Barakat, M., Khan, M., Mustafa, A., Ismail, I., Murphy, J. (2016). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250–259, doi: 10.1016/j.wasman.2016.09.023
  22. Garba, M., Musa, U., Olugbenga, A., Mohammad, Y.S., Yahaya, M., Ibrahim, A. (2018). Catalytic upgrading of bio-oil from bagasse: Thermogravimetric analysis and fixed bed pyrolysis. Beni-Suef University Journal of Basic and Applied Sciences, 7, 776–781, doi: 10.1016/j.bjbas.2018.11.004
  23. Weber, R.S., Olarte, M.V., Wang, H. (2014). Modeling the kinetics of deactivation of catalysts during the upgrading of bio-oil. Energy & Fuels, 29, 273–277, doi: 10.1021/ef502483t
  24. Li, X., Gunawan, R., Wang, Y., Chaiwat, W., Hu, X., Gholizadeh, M., Mourant, D., Bromly, J., Li, C. (2014). Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst. Fuel, 116, 642–649, doi: 10.1016/j.fuel.2013.08.046
  25. Marcilla, A., Beltrán, M., Navarro, R. (2009). Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B: Environmental, 86, 78–86, doi: 10.1016/j.apcatb.2008.07.026
  26. He, M., Xiao, B., Liu, S., Hu, Z., Guo, X., Luo, S., Yang, F. (2010). Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. Journal of Analytical and Applied Pyrolysis, 87, 181–187, doi: 10.1016/j.jaap.2009.11.005
  27. Rahman, M.M., Liu, R., Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil–a review. Fuel Processing Technology, 180, 32–46, doi: 10.1016/j.fuproc.2018.08.002
  28. Hu, X., Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39, 109–143, doi: 10.1016/j.jechem.2019.01.024
  29. Gandidi, I.M., Susila, M.D., Mustofa, A., Pambudi, N.A. (2018). Thermal–catalytic cracking of real MSW into bio-crude oil. Journal of the Energy Institute, 91, 304–310, doi: 10.1016/j.joei.2016.11.005
  30. Karnjanakom, S., Bayu, A., Xiaoketi, P., Hao, X., Kongparakul, S., Samart, C., Abudula, A., Guan, G. (2016). Selective production of aromatic hydrocarbons from catalytic pyrolysis of biomass over Cu or Fe loaded mesoporous rod-like alumina. RSC Advances, 6, 50618–50629, doi: 10.1039/C6RA09431G
  31. Li, S., Sanna, A., Andresen, J.M. (2011). Influence of temperature on pyrolysis of recycled organic matter from municipal solid waste using an activated olivine fluidized bed. Fuel Processing Technology, 92, 1776–1782, doi: 10.1016/j.fuproc.2011.04.026
  32. Fang S, Yu Z, Ma X, Lin, Y, Chen, L., Liao, Y. (2018). Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy, 143, 517–532, doi: 10.1016/j.energy.2017.11.038
  33. Ryu, H.W., Lee, H.W., Jae, J., Park, Y. (2019). Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst. Energy, 179, 669–675, doi: 10.1016/j.energy.2019.05.015
  34. Channiwala, S., Parikh, P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063, doi: 10.1016/S0016-2361(01)00131-4
  35. Penkova, A., Bobadilla, L., Ivanova, S., Dominguez, M., Romero-Sarria, F., Roger, A., Centeno, M., Odriozola, J.A. (2011). Hydrogen production by methanol steam reforming on NiSn/MgO–Al2O3 catalysts: The role of MgO addition. Applied Catalysis A: General, 392, 184–191, doi: 10.1016/j.apcata.2010.11.016
  36. Cimino, S., Apuzzo, J., Lisi, L. (2019). MgO dispersed on activated carbon as water tolerant catalyst for the conversion of ethanol into butanol. Applied Sciences, 9, 1371, doi: 10.3390/app9071371
  37. Zhang, X., Lei, H., Zhu, L., Wei, Y., Liu, Y., Yadavalli, G., Yan, D., Wu, J., Chen, S. (2015). Production of renewable jet fuel range alkanes and aromatics via integrated catalytic processes of intact biomass. Fuel, 160, 375–385, doi: 10.1016/j.fuel.2015.08.006
  38. Buah, W., Cunliffe, A., Williams, P. (2007). Characterization of products from the pyrolysis of municipal solid waste. Process Safety and Environment Protection, 85, 450–457, doi: 10.1205/psep07024
  39. Lopez, A., De Marco, I., Caballero, B, Laresgoiti, M., Adrados, A. (2011). Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173, 62–71, doi: 10.1016/j.cej.2011.07.037
  40. Horne, P.A., Williams, P.T. (1996). Influence of temperature on the products from the flash pyrolysis of biomass. Fuel, 75, 1051–1059, doi: 10.1016/0016-2361(96)00081-6
  41. Case, P.A., Wheeler, M.C., DeSisto, W.J. (2014). Formate assisted pyrolysis of pine sawdust for in-situ oxygen removal and stabilization of bio-oil. Bioresource Technology, 173, 177–184, doi: 10.1016/j.biortech.2014.09.075
  42. Abnisa, F., Wan Daud, W.M.A. (2014). A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 87, 71–85, doi: 10.1016/j.enconman.2014.07.007
  43. Park, D., Hwang, E., Kim, J., Choi, J., Kim, Y, Woo, H. (1999). Catalytic degradation of polyethylene over solid acid catalysts. Polymer Degradation and Stability, 65, 193–198, doi: 10.1016/S0141-3910(99)00004-x
  44. Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Rotness, L.J., Zacher, A.H. (2009). Catalytic hydroprocessing of biomass fast pyrolysis bio‐oil to produce hydrocarbon products. Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, 28, 441–449, doi: 10.1002/ep.10384
  45. Aysu, T., Küçük, M.M. (2014). Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy, 64, 1002–1025, doi: 10.1016/j.energy.2013.11.053

Last update:

No citation recorded.

Last update:

No citation recorded.