skip to main content

Investigating Photochromic Behavior of Organic Dyes in Solution Form using Multilevel Factorial Design

1Department of Mechatronics Engineering, Faculty of Engineering, International Islamic University Malaysia, P. O. Box 10, 50728 Kuala Lumpur, Malaysia

2Department of Science in Engineering, Faculty of Engineering, International Islamic University Malaysia, P. O. Box 10, 50728 Kuala Lumpur, Malaysia

3Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

4 Industrial Centre of Innovation (ICI) Biomedical, SIRIM Industrial Research (SIR), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim, Kedah, Malaysia

View all affiliations
Received: 2 Mar 2021; Revised: 2 Apr 2021; Accepted: 5 Apr 2021; Available online: 8 Apr 2021; Published: 30 Jun 2021.
Editor(s): Istadi Istadi, Mohd Asmadi Mohammed Yussuf, Salman Raza Naqvi, Nor Saidina-Amin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Photochromic compounds, namely spiropyran, spirooxazine, and naphthopyran, have received much attention, because of their high potential applications in various industrial fields. The aim of this study is to understand the behavior of three photochromic dyes in solution form via statistical approach. The types of dyes and solvents were screened using multilevel factorial design. From the analysis of variance results, it was found that the types of dyes and solvents used as well as their interaction have significant effects on the absorbance and photostability. The naphthopyran compound displayed highest change in absorbance intensity, followed by spiropyran and spirooxazine, when dissolved in isopropanol separately. However, the spirooxazine is the most photostable dye compared to naphthopyran and spiropyran, with ethanol as the solvent. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Photochromism; spiropyran; spirooxazine; naphthopyran; factorial design; photostability
Funding: Ministry of Higher Education Malaysia under contract FRGS Grant No. 11-029-0177

Article Metrics:

  1. Dürr, H. (2003). Chapter 1 - General Introduction, in H. Dürr, H. Bouas-Laurent (Editors) Photochromism. Amsterdam: Elsevier Science. DOI: 10.1016/B978-044451322-9/50005-1
  2. Nigel Corns, S., Partington, S.M., Towns, A.D. (2009). Industrial organic photochromic dyes. Coloration Technology, 125(5), 249–261. DOI: 10.1111/j.1478-4408.2009.00204.x
  3. Cheng, H., Yoon, J., Tian, H. (2018). Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coordination Chemistry Reviews, 372, 66–84. DOI: 10.1016/j.ccr.2018.06.003
  4. Xia, H., Xie, K., Zou, G. (2017). Advances in spiropyrans/spirooxazines and applications based on Fluorescence Resonance Energy Transfer (FRET) with fluorescent materials. Molecules, 22(12), 2236. DOI: 10.3390/molecules22122236
  5. Xia, H., Li, J., Zou, G., Zhang, Q., Jia, C. (2013). A highly sensitive and reusable cyanide anion sensor based on spiropyran functionalized polydiacetylene vesicular receptors. Journal of Materials Chemistry A, 1(36), 10713–10719. DOI: 10.1039/C3TA11526G
  6. Sahoo, P.R., Kumar, S. (2016). Photochromic spirooxazine as highly sensitive and selective probe for optical detection of Fe3+ in aqueous solution. Sensors and Actuators B: Chemical, 226, 548–552. DOI: 10.1016/j.snb.2015.12.039
  7. Little, A.F., Christie, R.M. (2016). Textile applications of commercial photochromic dyes. Part 6: photochromic polypropylene fibres. Coloration Technology, 132(4), 304–309. DOI: 10.1111/cote.12221
  8. Nakazumi, H., Makita, K., Nagashiro, R. (1997). New sol-gel photochromic thin films made by super-fine particles of organic photochromic compounds. Journal of Sol-Gel Science and Technology, 8(1–3), 901–909. DOI: 10.1023/A:1018331401548
  9. Hou, L., Mennig, M., Schmidt, H.K. (1994). Improvement of photofatigue resistance of spirooxazine entrapped in organic-inorganic composite synthesized via the sol-gel process. In Proc. SPIE Sol-Gel Optics III, 2288, 328–339. San Diego, CA, United States (13 October 1994). DOI: 10.1117/12.188966
  10. Malatesta, V. (2002). Photodegradation of Organic Photochromes. In J.C. Crano, R.J. Guglielmetti (Editors) Organic Photochromic and Thermochromic Compounds: Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism. Boston, MA: Springer US. DOI: 10.1007/0-306-46912-x_3
  11. Islam, N.Z.M., Nazri, S.A.A.A., Nadir, N., Zainuddin, M.T. (2017). The study of photochromic performance and photofatigue behavior of spirooxazine. AIP Conference Proceedings, 1901(1), 130014. DOI: 10.1063/1.5010574
  12. Alimi, F., Boubakri, A., Tlili, M.M., Ben Amor, M. (2014). A comprehensive factorial design study of variables affecting CaCO3 scaling under magnetic water treatment. Water Science and Technology, 70(8), 1355–1362. DOI: 10.2166/wst.2014.377
  13. del Campo, G., Gallego, B., Berregi, I. (2006). Fluorimetric determination of histamine in wine and cider by using an anion-exchange column-FIA system and factorial design study. Talanta, 68(4), 1126–1134. DOI: 10.1016/j.talanta.2005.07.019
  14. Krishnan, J., Kishore, A.A., Suresh, A., Madhumeetha, B., Prakash, D.G. (2017). Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. International Biodeterioration & Biodegradation, 119, 16–27. DOI: 10.1016/j.ibiod.2016.11.024
  15. ReVelle, J.B., Margetts, D.N. (2009). Home Builder's Guide to Continuous Improvement: Schedule, Quality, Customer Satisfaction, Cost, and Safety. Boca Raton: CRC Press
  16. Montgomery, D.C. (2005). Design and analysis of experiments. Hoboken, NJ: John Wiley & Sons
  17. Nadir, N., Wahid, Z., Shafie, A., Muthalif, A.A., Malek, M.A., Aziz, N.N.A., Zainuddin, M., Islam, N.M. (2013). Development of real time experimental system for investigating photochromic response to UV irradiation. IOP Conference Series: Materials Science and Engineering, 53, 012083. DOI: 10.1088/1757-899X/53/1/012083
  18. Nadir, N., Wahid, Z., Zainuddin, M.T., Islam, M., Zalikha, N. (2014). Photochromic Behavior of Spiropyrans: The Effect of Substituent. Advanced Materials Research, 925, 323–328. DOI: 10.4028/www.scientific.net/AMR.925.323
  19. Negri, R.M., Prypsztejn, H.E. (2001). An experiment on photochromism and kinetics for the undergraduate laboratory. Journal of Chemical Education, 78(5), 645. DOI: 10.1021/ed078p645
  20. Feczkó, T., Kovács, M., Voncina, B. (2012). Improvement of fatigue resistance of spirooxazine in ethyl cellulose and poly (methyl methacrylate) nanoparticles using a hindered amine light stabilizer. Journal of Photochemistry and Photobiology A: Chemistry, 247, 1–7. DOI: 10.1016/j.jphotochem.2012.08.001
  21. Zhang, S., Zhang, Q., Ye, B., Li, X., Zhang, X., Deng, Y. (2009). Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion. The Journal of Physical Chemistry B, 113(17), 6012–6019. DOI: 10.1021/jp9004218
  22. Mathews, P.G. (2005). Design of Experiments with MINITAB. Milwaukee: ASQ Quality Press
  23. Lesik, S.A. (2018). Applied Statistical Inference with MINITAB®. London: Chapman and Hall/CRC
  24. Bouas-Laurent, H., Dürr, H. (2001). Organic photochromism (IUPAC technical report). Pure and Applied Chemistry, 73(4), 639–665. DOI: 10.1351/pac200173040639
  25. Levy, D. (1997). Recent applications of photochromic sol-gel materials. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 297(1), 31–39. DOI: 10.1080/10587259708036100
  26. Lafuma, A., Chodorowski‐Kimmes, S., Quinn, F.X., Sanchez, C. (2003). Photochromic properties of a spirooxazine and a spiropyran in alcoholic solutions of zirconium and aluminium alkoxides: influence of the ethyl acetoacetate chelating agent on the optical properties. European Journal of Inorganic Chemistry, 2003(2), 331–338. DOI: 10.1002/ejic.200390045
  27. Salemi-Delvaux, C., Luccioni-Houze, B., Baillet, G., Giusti, G., Guglielmetti, R. (1995). Effect of photodegradation on the thermal bleaching rate constant of photochromic compounds in spiro [indoline-pyran] and spiro [indoline-oxazine] series. Journal of Photochemistry and Photobiology A: Chemistry, 91(3), 223–232. DOI: 10.1016/1010-6030(95)04113-X
  28. Harbron, E.J., Davis, C.M., Campbell, J.K., Allred, R.M., Kovary, M.T., Economou, N.J. (2009). Photochromic dye-doped conjugated polymer nanoparticles: photomodulated emission and nanoenvironmental characterization. The Journal of Physical Chemistry C, 113(31), 13707–13714. DOI: 10.1021/jp9037864
  29. Zayat, M., Levy, D. (2003). Photochromic naphthopyrans in sol–gel ormosil coatings. Journal of Materials Chemistry, 13(4), 727–730. DOI: 10.1039/B211759B
  30. Keum, S.-R., Hur, M.-S., Kazmaier, P.M., Buncel, E. (1991). Thermo-and photochromic dyes: indolino-benzospiropyrans. Part 1. UV–VIS spectroscopic studies of 1, 3, 3-spiro (2 H-1-benzopyran-2, 2′-indolines) and the open-chain merocyanine forms; solvatochromism and medium effects on spiro ring formation. Canadian Journal of Chemistry, 69(12), 1940–1947. DOI: 10.1139/v91-279
  31. Kopelman, R.A., Snyder, S.M., Frank, N.L. (2003). Tunable photochromism of spirooxazines via metal coordination. Journal of the American Chemical Society, 125(45), 13684–13685. DOI: 10.1021/ja036306y
  32. Piech, M., Bell, N.S. (2006). Controlled synthesis of photochromic polymer brushes by atom transfer radical polymerization. Macromolecules, 39(3), 915–922. DOI: 10.1021/ma0512760
  33. Such, G., Evans, R.A., Yee, L.H., Davis, T.P. (2003). Factors influencing photochromism of spiro-compounds within polymeric matrices. Journal of Macromolecular Science, Part C: Polymer Reviews, 43(4), 547–579. DOI: 10.1081/MC-120025978
  34. McGarvey, D.J. (2006). Industry-linked context-based chemistry practicals. New Directions in the Teaching of Physical Sciences, (2), 57–64. DOI: 10.29311/ndtps.v0i2.436
  35. Luccioni-Houzé, B., Campredon, M., Guglielmetti, R., Giusti, G. (1997). Kinetic analysis of fluoro-[2H]-chromenes at the photostationary states. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 297(1), 161–165. DOI: 10.1080/10587259708036117
  36. Shumburo, A., Biewer, M.C. (2002). Stabilization of an organic photochromic material by incorporation in an organogel. Chemistry of Materials, 14(9), 3745–3750. DOI: 10.1021/cm020421a
  37. Crano, J.C., Guglielmetti, R.J. (2002). Introduction. In J.C. Crano, R.J. Guglielmetti (Editors) Organic Photochromic and Thermochromic Compounds: Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism. Boston, MA: Springer US. DOI: 10.1007/0-306-46912-x_1
  38. Nishikiori, H., Tanaka, N., Takagi, K., Fujii, T. (2003). Solvent effect on fluorescence spectra of a spirooxazine. Research on Chemical Intermediates, 29(5), 485–493. DOI: 10.1163/156856703322149026
  39. Pardo, R., Zayat, M., Levy, D. (2008). Effect of the chemical environment on the light-induced degradation of a photochromic dye in ormosil thin films. Journal of Photochemistry and Photobiology A: Chemistry, 198(2), 232–236. DOI: 10.1016/j.jphotochem.2008.03.013
  40. Piard, J. (2014). Influence of the Solvent on the Thermal Back Reaction of One Spiropyran. Journal of Chemical Education, 91(12), 2105–2111. DOI: 10.1021/ed4005003
  41. Rezvanova, A.A., Frolova, L.A., Troshin, P.A. (2016). Design of optical memory elements based on n-type organic field-effect transistors comprising a light-sensitive spirooxazine layer. Mendeleev Communications, 26(1), 26–28. DOI: 10.1016/j.mencom.2016.01.011

Last update:

No citation recorded.

Last update:

No citation recorded.