skip to main content

In Search of Magnetic Properties of Samarium Cobalt (Sm2Co17) within a Low-Temperature Sintering Process

1Department of Mechanical Engineering, Universitas Negeri Malang, , Indonesia

2Centre of Advanced Material and Renewable Energy, Universitas Negeri Malang, Indonesia

3Department of Mechanical Engineering, Universitas Negeri Malang, Indonesia

4 Department of Mechanical Engineering, Universitas Negeri Malang, Indonesia, Indonesia

5 Department of Manufacturing and Mechanical Engineering and Technology, Oregon Institute of Technology, Klamath Falls, United States

6 Industrial Chemical Technology Programme, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Negeri Sembilan, United States

7 Department of Electrical and Electronics Engineering, Mahsa University, Selangor, Malaysia

View all affiliations
Received: 1 Mar 2021; Revised: 11 May 2021; Accepted: 11 May 2021; Published: 30 Sep 2021; Available online: 28 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Samarium cobalt is known as super high density magnetic material with large magnetic anisotropy energy. Samarium–cobalt exhibits manipulative magnetic properties as a rare-earth material which has different properties in a low sintering temperature. It is therefore of paramount importance to investigate samarium cobalt (Sm2Co17) magnetic properties in the low temperature sintering condition. Sm2Co17, which is utilized in this research, is synthesized via the sol–gel process at sintering temperatures of 400, 500, and 600 °C. Subsequently, the crystallites indicate the formation of a single-phase Sm2Co17 on all the samples in all temperature variations. Moreover, the peaks in the X-ray diffraction analysis of crystallite sizes calculated using the Scherrer equation are 17.730, 15.197, and 13.296 nm at 400, 500, and 600 °C. Through scanning electron microscopy, the particles are found to be relatively large and agglomerated, with average sizes of 143.65, 168.78, and 237.26 nm. The functional groups are also analyzed via Fourier-transform infrared spectroscopy, which results in the appearance of several bonds in the samples, for example, alkyl halides, alkanes, and esters with aromatic functional groups on the fingerprint area and alkynes, alkyl halides, and alcohol functional groups at a wavelength of above 1500 cm. The test results of the magnetic properties using vibrating-sample magnetometer (VSM) revealed high coercivity and retentivity in the samples sintered at 400 °C. However, the highest saturation occurs in the samples sintered at 600 ℃. At a low sintering temperature (below 1000 °C), samarium cobalt shows as the soft magnetic material. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: samarium-cobalt; sol-gel; sintering; magnetic properties
Funding: Ministry of Education, Culture, Research and Technology Republic of Indonesia under contract 10.3.90/UN32.14.1/LT/2020

Article Metrics:

Article Info
Section: The 1st International Conference (virtual) on Sustainable Energy and Catalysis 2021 (ICSEC 2021)
Language : EN
  1. Zhuang, M., Wang, L., Wu, G., Wang, K., Jiang, X. (2017). Health risk assessment of rare earth elements in cereals from mining area in Shandong, China. Scientific Reports, 7, 9772. DOI: 10.1038/s41598-017-10256-7
  2. Yang, C., Jia, L., Wang, S., Gao, C., Shi, D., Hou, Y., Gao, S. (2013). Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6].4H2O@ GO Particles: A Novel Chemical Approach. 1–7. DOI: 10.1038/srep03542
  3. Wu, L., Mendoza-garcia, A., Li, Q., Sun, S. (2016). Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews, 116(18), 10473–10512. DOI: 10.1021/acs.chemrev.5b00687
  4. Yue, M., Zhang, X., Liu, J.P. (2017). Fabrication of bulk nanostructured permanent magnets with high energy density: Challenges and approaches. Nanoscale, 9, 3674-3697. DOI: 10.1039/C6NR09464C
  5. Xiong, Y., Xianmao, L. (2015). Metallic Nanostructures. Springer International Publishing. DOI: 10.1007/978-3-319-11304-3
  6. Ai, Y., Liu, Y., Lan, W., Jin, J., Xing, J., Zou, Y., Zhao, C., Wang, X. (2018). The effect of pH on the U(VI) sorption on graphene oxide (GO): A theoretical study. Chemical Engineering Journal, 343, 460–466. DOI: 10.1016/j.cej.2018.03.027
  7. López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J. (2015). Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1-32. DOI: 10.1016/j.physrep.2014.09.007
  8. Liu, F., Hou, Y., Gao, S. (2014). Exchange-coupled nanocomposites: Chemical synthesis, characterization and applications. Chemical Society Reviews, 43, 8098–8113. DOI: 10.1039/C4CS00162A
  9. Ma, Z., Zhang, T., Jiang, C. (2015). Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Advances, 5(c), 89128–89132. DOI: 10.1039/C5RA15079E
  10. Ma, Z., Yang, S., Zhang, T., Jiang, C. (2016). The chemical synthesis of SmCo5 single-crystal particles with small size and high performance. Chemical Engineering Journal, 304, 993–999. DOI: 10.1016/j.cej.2016.07.024
  11. Suresh, G., Saravanan, P., Babu, D.R. (2012). Effect of annealing on phase composition, structural and magnetic properties of Sm-Co based nanomagnetic material synthesized by sol-gel process. Journal of Magnetism and Magnetic Materials, 324(13), 2158–2162. DOI: 10.1016/j.jmmm.2012.02.038
  12. Khan, Y. (1972). A Contribution to the Sm-Co Phase Diagram. Acta Crystallographica, Section B, Structural Science, 290–292. DOI: 10.1107/S0567740874003943
  13. Ray, A.E. (1972). Research and Development of Rare Earth Transition Metal Alloys as Permanent Magnet Materials. AD0774471
  14. Bu, S., Duan, X., Han, X., Sun, J., Chi, X., Cui, C. (2016). Preparation , microstructure and magnetic properties of Sm(Co,Hf)7/Co nanocomposite particles by polyol method ( f ) (g). Physica B: Physics of Condensed Matter, 506, 138–144. DOI: 10.1016/j.physb.2016.11.010
  15. Chem, J.M., Zhang, H., Peng, S., Rong, C., Liu, J.P., Zhang, Y., Kramer, M.J. (2011). Chemical synthesis of hard magnetic SmCo nanoparticles. Journal of Materials Chemistry, 21, 16873–16876. DOI: 10.1039/c1jm11753j
  16. Lee, J., Hwang, T.-Y., Kang, M.K., Cho, H.-B., Kim, J., Myung, N.V., Choa, Y.-H. (2018). Synthesis of Samarium-Cobalt Sub-micron Fibers and Their Excellent Hard Magnetic Properties. Frontiers in Chemistry, 6, 1–7. DOI: g/10.3389/fchem.2018.00018
  17. Saravanan, P., Premkumar, M., Singh, A.K., Gopalan, R., Chandrasekaran, V. (2009). Study on morphology and magnetic behavior of SmCo5 and SmCo5/Fe nanoparticles synthesized by surfactant-assisted ball milling. Journal of Alloys and Compounds, 480, 645–649. 10.1016/j.jallcom.2009.01.129
  18. Wu, W., Zhang, J., Cao, P., Dong, J., Ding, H. (2018). Synthesis of Sm–Co nanoparticles by sol–gel method. Modern Physics Letters B, 32, 1840069. DOI: 10.1142/S0217984918400699
  19. Dehghanghadikolaei, A., Ansary, J., Ghoreishi, R. (2018). Sol-gel process applications: A mini-review. Proceedings of the Nature Research Society, 2, 02008. DOI: 10.11605/j.pnrs.201802008
  20. Xavier, S., Thankachan, S., Jacob, B.P., Mohammed, E.M. (2013). Effect of Samarium Substitution on the Structural and Magnetic Properties of Nanocrystalline Cobalt Ferrite. Journal of Nanoscience, 2013, 524380. DOI: 10.1155/2013/524380
  21. Tian, J., Zhang, S., Qu, X., Pan, D., Zhang, M. (2012). Co-reduction synthesis of uniform ferromagnetic SmCo nanoparticles. Materials Letters, 68, 212–214. DOI: 10.1016/j.matlet.2011.10.076
  22. Acosta-Humánez F., Almanza O., Vargas-Hernández, C. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1-xCoxO (x = 0.01 - 0.05) samples. Superficies y Vacio 27(2), 43–48.
  23. Saravanan, P., Gopalan, R., Sivaprahasam, D., Chandrasekaran, V. (2009). Intermetallics Effect of sintering temperature on the structure and magnetic properties of SmCo5/Fe nanocomposite magnets prepared by spark plasma sintering. Intermetallics, 17(7), 517–522. DOI: 10.1016/j.intermet.2009.01.005
  24. Razak, J.A., Sufian, S., Ku Shaari, K.Z., Puspitasari, P., Hoe, T.K., Yahya, N. (2012). Synthesis, characterization and application of Y3Fe5O12 nanocatalyst for green production of NH3 using magnetic induction method (MIM). AIP Conference Proceedings, 1482, 633–638. DOI: 10.1063/1.4757548
  25. Yahya, N., Puspitasari, P. (2012). Y3Fe5O12 Nanocatalyst for Green ammonia Production by Using Magnetic Induction Method. Journal of Nano Research, 21, 131–137. DOI: 10.4028/
  26. Puspitasari, P. (2016). Green Ammonia Synthesis using Nanocatalysts in a Novel Magnetic Induction Method (MIM). Doctoral Thesis. Electrical and Electronic Engineering Department, University Technology PETRONAS, Malaysia
  27. Bastl, Z., Subrt, J., Bakardjieva, S., Bezdiˇ, P. (2011). Chemistry IR laser deposition: Co2Sm5 nanocrystals in amorphous Sm – Co phase and amorphous Sm – Co nanobodies in carbonaceous phase. Journal of Photochemistry and Photobiology A: Chemistry, 223, 132–139. DOI: 10.1016/j.jphotochem.2011.08.010
  28. Panzeri, G., Tresoldi, M., Rinaldi, C., Magagnin, L. (2017). Electrodeposition of Magnetic SmCo Films from Deep Eutectic Solvents and Choline Chloride-Ethylene Glycol Mixtures. Journal of The Electrochemical Society, 164(13), 2017–2020. DOI: 10.1149/2.0111714jes
  29. Iván, C., Rodríguez, R., Rurik, J., Mancilla, F., Edith, K., Chavez, V., Magaña, F.E., Federico, S., Méndez, O., Trinidad, J., Galindo, E. (2015). Effect of Thickness on Magnetic Dipolar and Exchange Interactions in SmCo/FeCo/SmCo Thin Films. Advances in Materials Physics and Chemistry, 5(9), 368–373. DOI: 10.4236/ampc.2015.59037
  30. Onodera, H., Yamaguchi, Y., Yamamoto, H., Sagawa, M., Matsuura, Y., Yamamoto, H. (1984). Magnetic properties of a new permanent magnet based on a Nd-Fe-B compound (neomax). I. Mössbauer study. Journal of Magnetism and Magnetic Materials, 46(1–2), 151–156. DOI: 10.1016/0304-8853(84)90352-4
  31. Medina M., Cammack, R. (2007). Endor and Related EMR Methods Applied to Flavoprotein Radicals. Applied Magnetic Resonance, 31, 457-470. DOI: 10.1007/BF03166596
  32. Ozerov, R.P., Vorobyev, A.A. (2007). Elements of Quantum Mechanics. In Physics for Chemists, Elsevier B.V., 423–496. DOI: 10.1016/b978-044452830-8/50009-x
  33. Puspitasari, P., Andoko, A., Suryanto, H., Risdanareni, P., Ekaputri, J.J. (2017). Properties of Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4 as Nanocatalyst for Ammonia Production. MATEC Web of Conferences, 97, 01029. DOI: 10.1051/matecconf/20179701029

Last update:

No citation recorded.

Last update:

No citation recorded.