skip to main content

Crystal Structure and Catalytic Activity of Poly[bis(3-bromo-2-hydroxybenzaldehyde)-2-aminopyrimidinemagnesium(II)] for Hydrogenation of 1,3-Butadiene

Li-Hua Wangscopus Fan-Yuan Kongscopus Xi-Shi Tai scopus

College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, P. R., China

Received: 19 Feb 2021; Revised: 28 Apr 2021; Accepted: 28 Apr 2021; Published: 30 Jun 2021; Available online: 2 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

A new six-coordinated Mn(II) coordination polymer, [Mn(L1)(L2)2]n (L1 = 2-aminopyrimidine, HL2 = 3-bromo-2-hydroxybenzaldehyde) was synthesized by 3-bromo-2-hydroxybenzaldehyde, NaOH, 2-aminopyrimidine and manganese(II) acetate dihydrate. The Mn(II) coordination polymer was structural characterized by elemental analysis and single crystal X-ray diffraction. The results show that each Mn(II) ion is six-coordinated with two phenolic hydroxyl O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O1 and O4), two formyl group O atoms from two 3-bromo-2-hydroxybenzaldehyde ligands (O2 and O3), and two N atoms from two 2-aminopyrimidine molecules (N1A and N2), and forms a distorted octahedral coordination geometry. The Mn(II) coordination polymer displays a 1D chained structure by the bridge effect of 2-aminopyrimidine N atoms. The catalytic activities of Mn(II) coordination polymer and Pd@Mn(II) coordination polymer for hydrogenation of 1,3-butadiene have been investigated. The Pd@Mn(II) coordination polymer catalyst shows the good catalytic activity and selectivity in  the hydrogenation of 1,3-butadiene. The 1,3-butadiene conversion is 61.3% at 70 °C, and the selectivity to total butene is close to 100%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Mn (II) coordination polymer; Synthesis; Structural characterization; Catalytic activity
Funding: National Natural Science Foundation of China under contract Contract No. 21171132

Article Metrics:

  1. Hou, R., Yu, W., Porosoff, M.D., Chen, J., Wang, T. (2014). Selective hydrogenation of 1,3-butadiene on PdANi bimetallic catalyst: From model surfaces to supported catalysts. Journal of Catalysis, 316, 1–10. DOI: 10.1016/j.jcat.2014.04.015
  2. Pattamakomsan, K., Ehret, E., Morfifin, F., Gélin, P., Jugnet, Y., Prakash, S.,Bertolini, J.C., Panpranot, J., Aires, F.J.C.S. (2011). Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catalysis Today, 164: 28–33. DOI: 10.1016/j.cattod.2010.10.013
  3. Guo, Y., Yang, J., Zhuang, J., Sun, Z., Zhang, H., Yue, Y., Zhu, H., Bao, X., Yuan, P. (2020). Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst. Applied Catalysis A: General, 589, 117312–117320. DOI: 10.1016/j.apcata.2019.117312
  4. Yuan, F., Yu, H.S., Yuan, C.M., Zhou, C.S., Li, F., Lu, Y.J., Ling, X.Y., Wang, J., Singh, A., Kumar, A. (2020). Structures and Photocatalytic Properties of two Mn(II)-based Coordination Polymers. Inorganica Chimica Acta, 499, 119189. DOI: 10.1016/j.ica.2019.119189
  5. Song, M., Mu, B., Huang, R.D. (2017). Syntheses, Structures, Electrochemistry and Catalytic Oxidation Degradation of Organic Dyes of Two New Coordination Polymers Derived From Cu(II) and Mn(II) and 1-(Tetrazo-5-yl)-4-(triazo-1-yl)benzene. Journal of Solid State Chemistry, 246, 1–7. DOI: 10.1016/j.jssc.2016.10.024
  6. Lymperopoulou, S., Papastergiou, M., Louloudi, M. (2014). Synthesis, Characterization, Magnetic and Catalytic Properties of a Ladder-Shaped Mn-II Coordination Polymer. European Journal of Inorganic Chemistry, 23, 3638–3644. DOI: 10.1002/ejic.201402419
  7. Liu, L., Huang, C., Zhang, L. (2015). Co(II)/Mn(II)/Cu(II) Coordination Polymers Based on Flexible 5,5-(Hexane-1,6-diyl)-bis(oxy)diisophthalic Acid: Crystal Structures, Magnetic Properties, and Catalytic Activity. Crystal Growth and Design, 15, 2712–2722. DOI: 10.1021/acs.cgd.5b00016
  8. Yan, Q.Q., Li, B., Yong, G.P. (2021). Co(II) and Mn(II) Coordination Polymers: Ligand Functional and Positional Isomeric Effects, Structural Diversities, Luminescence Sensing and Magnetic Properties. Polyhedron, 194, 114918. DOI: 10.1016/j.poly.2020.114918
  9. Dutta, B., Maity, S., Ghosh, S., Sinha, C., Mir, M.H. (2019). An Acetylenedicarboxylato-bridged Mn(ii)-based 1D Coordination Polymer: Electrochemical CO2 Reduction and Magnetic Properties. New Journal of Chemistry, 43, 5167–5172. DOI: 10.1039/C8NJ06387G
  10. Agarwal, R.N., Gupta, N.K. (2017). Integration of Ag/AgCl and Au Nanoparticles into Isostructural Porous Coordination Polymers of Ni(II), Co(II) and Mn(II): Magnetic Studies. RSC Advances, 7, 3870–3878. DOI: 10.1039/C6RA26642H
  11. Sehimi, H., Zid, M.F. (2018). A novel Mn(II) Oxalato-Bridged 2D Coordination Polymer: Synthesis, Crystal Structure, Spectroscopic, Thermal and Magnetic Properties. Journal of Chemical Sciences, 130, 25
  12. Martina, L., Josefina, C., Fiorella, M., Carlo, C., Javier, M.R., Massimo, C. (2020). Tuneable Solvent Adsorption and Exchange by 1D Bispidine-based Mn(II) Coordination Polymers via Ligand Design. Dalton Transactions, 49, 13420–13429. DOI: 10.1039/D0DT02734K
  13. Liu, H., Guo, Z.F., Lv, H., Liu, X., Che, Y., Mei, Y.C., Bai, R., Chi, Y.H., Xing, H.Z. (2020). Visible-light-driven Self-coupling and Oxidative Dehydrogenation of Amines to Imines via a Mn(II)-based Coordination Polymer. Inorganic Chemistry Frontiers, 7, 1016–1025. DOI: 10.1039/C9QI01396B
  14. Wang, Y., Li, C. (2018). 3D Porous Mn(II) Coordination Polymer with Left-handed Helical Chains as Building Subunits: Selective Gas Adsorption of CO2 over CH4 and Anticancer Activity Evaluation. Inorganic Chemistry Communications, 96, 180–183. DOI: 10.1016/j.inoche.2018.08.020
  15. Etaiw, S..E.H., El-Bendary, M.M., Abdelazim, H. (2017). Synthesis, Characterization, and Biological Activity of Cd(II) and Mn(II) Coordination Polymers Based on Pyridine-2,6-dicarboxylic Acid. Russian Journal of Coordination Chemistry, 43, 320–330. DOI: 10.1134/S1070328417050013
  16. Yang, H.L., Chen, F., He, X., Li, Y., Zhang, X.Q. (2018). Synthesis, Crystal Structure, Thermal Stability, Luminescence and Magnetic Property of a New Mn(II) Coordination Polymer. Chinese Journal of Structural Chemistry, 37, 1834–1841. DOI: 10.14102/j.cnki.0254-5861.2011-2145
  17. Li, S.D., Lu, L.P., Zhu, M.L., Feng, S.S., Su, F., Zhao, X.F. (2018). Exploring the Syntheses, Structures, Topologies, Luminescence Sensing and Magnetism of Zn(II) and Mn(II) Coordination Polymers Based on a Semirigid Tricarboxylate Ligand. CrystEngComm, 20, 5442–5456. DOI: 10.1039/C8CE00947C
  18. Zhai, L., Yang, Z.X., Zhang, W.W., Zuo, J.L., Ren, X.M. (2017). Surprisingly High Quantum Yield of Emission in a Fluorescent Coordination Polymer with Paramagnetic Mn(II) Ions. Dalton Transactions, 46, 16779–16782. DOI: 10.1039/C7DT03909C
  19. Kan, W.Q., He, Y.C., Zhang, Z.C., Kan, Y.H., Wen, S.Z. (2019). Three Coordination Polymers Constructed from a Multidentate N-donor Ligand, Polycarboxylate Anions and Zn(II)/Ag(I)/Mn(II) Ions: Synthesis, Structures, Characterization and pH-dependent Photoluminescence. Journal of the Iranian Chemical Society, 16, 2021–2029. DOI: 10.1007/s13738-019-01672-9
  20. Hu, L., Lin, X.M., Lin, J., Zhang, R.Q., Zhang, D.L., Cai, Y.P. (2016). Structural Diversity of Mn(II), Zn(II) and Pb(II) Coordination Polymers Constructed from Isomeric Pyridylbenzoate N-oxide Ligands: Structures and Electrochemical Properties. CrystEngComm, 48, 9307–9315. DOI: 10.1039/C6CE02071B
  21. Xu, B.W., Niu, R.J., Liu, Q., Yang, J.Y., Zhang, W.H., Young, D.J. (2020). Similarities and Differences Between Mn(II) and Zn(II) Coordination Polymers Supported by Porphyrin-based Ligands: Synthesis, Structures and Nonlinear Optical Properties. Dalton Transactions, 49, 12622–12631. DOI: 10.1039/D0DT02450C
  22. Tan, J.T., Pan, M., Li, S., Yang, X.W. (2018). Two New Cd(II) Coordination Polymer Based on Biphenyl-3, 3΄, 5, 5΄-tetracarboxylic acid. Inorganic Chemistry Communications, 87, 36–39. DOI: 10.1016/j.inoche.2017.11.017
  23. Wang, L.H., Wang, X., Tai, X.S. (2017). Synthesis, Crystal Structure and Catalytic Activity of a 1D Chained Ca(II) Coordination Polymer with 3,5-Bis(4-pyridylmethoxy)benzoate Ligand. Crystals, 7, 72. DOI: 10.3390/cryst7030072
  24. Wang, L.H., Liang, L., Wang, X. (2017). Synthesis, Structural Characterization and Catalytic Activity of A Cu(II) Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12, 113–118. DOI: 10.9767/bcrec.12.1.735.113-118
  25. Wang, L.H., Liang, L., Li, P.F. (2017). Synthesis, Crystal Structure, Catalytic Properties, and Luminescent of a Novel Eu(III) Complex Material with 4-Imidazolecarboxaldehyde-pyridine-2-carbohydrazone. Bulletin of Chemical Reaction Engineering & Catalysis, 12, 185–190. DOI: 10.9767/bcrec.12.2.764.185-190
  26. Tai, X.S., Li, P.F., Liu, L.L. (2018). Preparation, Characterization, and Catalytic Property of a Cu(II) Complex with 2-Carboxybenzaldehyde-p-Toluenesulfonyl Hydrazone Ligand. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 7–13. DOI: 10.9767/bcrec.13.1.1012.7-13
  27. Tai, X.S., Guo, Q.Q., Li, P.F., Liu, L.L. (2018). A Ca(II) Coordination Polymer of 2-Carboxybenzaldehyde: Synthesis, Crystal Structure, and Catalytic Activity in Oxidation of Benzyl Alcohol. Crystals, 8, 150. DOI: 10.3390/cryst8040150
  28. Tai, X.S., Li, P.F., Liu, L.L. (2018). Synthesis, Crystal Structure and Catalytic Activity of a Calcuim(II) Complex with 4-Formylbenzene-1,3-disulfonate-isonicotinic Acid Hydrazone. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 429–435. DOI: 10.9767/bcrec.13.3.1961.429-435
  29. Liu, L.L., Zhou, X.J., Guo, L.X., Yan, S.J., Li, Y.J., Jiang, S., Tai, X.S. (2020). Bimetallic Au–Pd Alloy Nanoparticles Supported on MIL-101(Cr) as Highly Efficient Catalysts for Selective Hydrogenation of 1,3-Butadiene. RSC Advances, 10, 33417–33427. DOI: 10.1039/D0RA06432G
  30. Sheldrick, G.M. (2015). Crystal Structure Refinement with SHELXL. Acta Crystallographica, C71, 3–8. DOI: 10.1107/S2053229614024218
  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2009). OLEX2: A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42, 339–341. DOI: 10.1107/S0021889808042726
  32. Yin, J., Zhang, F.J., Tai, X.S. (2021). The Crystal Structure of Trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn. Zeitschrift für Kristallographie. New Crystal Structures, 236, 45–46. DOI: 10.1515/ncrs-2020-0467
  33. Wang, L.H., Li, P.F. (2018). Synthesis, Structure, and Catalytic Activity of A New Mn(II) Complex with 1,4-Phenylenediacetic Acid and 1,10-Phenanthroline. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 1–6. DOI: 10.9767/bcrec.13.1.975.1-6
  34. Liu, L.L., Tai, X.S., Zhou, X.J., Liu, L., Zhang, Y., Ding, L.Y., Ahang, Y.C., (2020). Au–Pt Bimetallic Nanoparticle Catalysts Supported on UiO-67 for Selective 1,3-Butadiene Hydrogenation. Journal of the Taiwan Institute of Chemical Engineers, 114, 220-227. DOI: 10.1016/j.jtice.2020.09.025
  35. Lozano-Mart´ın, M.C., Castillejos, E., Bachiller-Baeza, B., Rodr´ıguez-Ramos, I., Guerrero-Ruiz, A. (2015). Selective 1,3-Butadiene Hydrogenation by Gold Nanoparticles on Novel Nano-carbon Materials. Catalysis Today, 249, 117–126. DOI: 10.1016/j.cattod.2014.11.023

Last update: 2021-06-13 22:08:12

No citation recorded.

Last update: 2021-06-13 22:08:12

No citation recorded.