skip to main content

The Promotion Effect of Cu on the Pd/C Catalyst in the Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds

Kamilia Mustikasari1, 2orcid publons scopus Rodiansono Rodiansono1, 2 orcid scopus Maria Dewi Astuti1, 2orcid scopus Sadang Husain3, 4orcid scopus Sutomo Sutomo5scopus

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru South Kalimantan, 70714, Indonesia., Indonesia

2Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University, Indonesia

3Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University, Indonesia., Indonesia

4 Department of Physics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, 70714, Indonesia

5 Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, 70714, Indonesia

View all affiliations
Received: 17 Feb 2021; Revised: 28 Apr 2021; Accepted: 29 Apr 2021; Published: 30 Jun 2021; Available online: 2 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Highly efficient and selective hydrogenation of a,b-unsaturated carbonyl compounds to unsaturated alcohol using bimetallic palladium-copper supported on carbon (denoted as Pd-Cu(3.0)/C; 3.0 is Pd/Cu molar ratio) catalyst is demonstrated. Pd-Cu(3.0)/C catalyst was prepared via a simple hydrothermal route under air atmosphere at 150 °C for 24 h followed by reduction with hydrogen at 400°C for 1.5 h. The chemoselective hydrogenation of typical a,b-unsaturated carbonyl ketone (2-cyclohexene-1-one) and aldehyde (trans-2-hexenaldehyde), and chemoselective hydrogenation of FFald and (E)-non-3-en-2-one mixture demonstrated high productivity, leading to high selectivity of unsaturated alcohols. The presence of bimetallic Pd-Cu alloy phase with relatively high H2 uptakes was observed, enabling to preferentially hydrogenate C=O rather than to C=C bonds under mild reaction conditions. Pd-Cu(3.0)/C catalyst was found to stable and reusable for at least four reaction runs and the activity and selectivity of the catalyst can be restored to the original after rejuvenation with H2 at 400 °C for 1.5 h. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: bimetallic palladium-copper; chemoselective hydrogenation; unsaturated carbonyl compounds; unsaturated alcohol
Funding: Ministry of Education and Culture Republic of Indonesia under contract Contract number: DIPA-042.06-1.401516/2020

Article Metrics:

  1. Hoydonckx, H.E., Van Rhijn, W.M., Van Rhijn, M., De Vos, D.E., Jacobs, P.A. (2012). Furfural and Derivatives, in: Ullmann's Encyclopedia of Industrial Chemistry, Wiley‐VCH Verlag GmbH & Co. KGaA, pp. 285–309. DOI: 10.1002/14356007.a12_119.pub2
  2. Kimura, H. (2011). Progress in one-step amination of long-chain fatty alcohols with dimethylamine development of key technologies for industrial applications, innovations, and future outlook. Catalysis Reviews-Science and Engineering, 53, 1–90. DOI: 10.1080/01614940.2011.556913
  3. Pasumansky, L., Goralski, C.T., Singaram, B. (2006). Lithium aminoborohydrides: Powerful, selective, air-stable reducing agents. Organic Process Research & Development, 10, 959–970. DOI: 10.1021/op0600759
  4. Cha, J.S. (2006). Recent developments in Meerwein-Ponndorf-Verley and related reactions for the reduction of organic functional groups using aluminum, boron, and other metal reagents: A review. Organic Process Research & Development, 10, 1032–1053. DOI: 10.1021/op068002c
  5. Ohkuma, T., Kurono, N., Arai, N. (2019). Development of asymmetric reactions catalyzed by ruthenium complexes with two kinds of ligands. Bulletin of the Chemical Society of Japan, 92, 475–504. DOI: 10.1246/bcsj.20180328
  6. Gallezot, P., Richard, D. (1998). Selective Hydrogenation of a,b-Unsaturated Aldehydes. Catalysis Reviews-Science and Engineering, 40, 81–126. DOI: 10.1080/01614949808007106
  7. Mäki-Arvela, P., Salmi, T., Holmbom, B., Willför, S., Murzin, D.Y. (2011). Synthesis of sugars by hydrolysis of hemicelluloses- A review. Chemical Reviews, 111, 5638–5666. DOI: 10.1021/cr2000042
  8. Claus, P. (1998). Selective hydrogenation of alpha,beta-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Topics in Catalysis, 5, 51–62. DOI: 10.1023/a:1019177330810
  9. Luneau, M., Lim, J.S., Patel, D.A., Sykes, E.C.H., Friend, C.M., Sautet, P. (2020). Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chemical Reviews, 120(23), 12834–12872. DOI: 10.1021/acs.chemrev.0c00582
  10. Lucci, F.R., Liu, J., Marcinkowski, M.D., Yang, M., Allard, L.F., Flytzani-Stephanopoulos, M., Sykes, E.C.H. (2015). Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nature Communications, 6, 1–8. DOI: 10.1038/ncomms9550
  11. Guo, Z., Xiao, C., Maligal-Ganesh, R.V., Zhou, L., Goh, T.W., Li, X., Tesfagaber, D., Thiel, A., Huang, W. (2014). Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 4, 1340–1348. DOI: 10.1021/cs400982n
  12. Silva, A.M., Santos, O.A.A., Mendes, M.J., Jordão, E., Fraga, M.A. (2003). Hydrogenation of citral over ruthenium-tin catalysts. Applied Catalysis A: General, 241, 155–165. DOI: 10.1016/S0926-860X(02)00463-5
  13. Gupta, K., Rai, R.K., Dwivedi, A.D., Singh, S.K. (2017). Catalytic Aerial Oxidation of Biomass-Derived Furans to Furan Carboxylic Acids in Water over Bimetallic Nickel–Palladium Alloy Nanoparticles. ChemCatChem, 9, 2760–2767. DOI: 10.1002/cctc.201600942
  14. Sankar, M., Dimitratos, N., Miedziak, P.J., Wells, P.P., Kiely, C.J., Hutchings, G.J. (2012). Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 41, 8099–8139. DOI: 10.1039/c2cs35296f
  15. Alonso, D.M., Wettstein, S.G., Dumesic, J.A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 41, 8075–8098. DOI: 10.1039/c2cs35188a
  16. Mäki-Arvela, P., Hájek, J., Salmi, T., Murzin, D.Y. (2005). Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 292, 1–49. DOI: 10.1016/j.apcata.2005.05.045
  17. Altmann, L., Wang, X., Borchert, H., Kolny-Olesiak, J., Zielasek, V., Parisi, J., Kunz, S., Bäumer, M. (2015). Influence of Sn content on the hydrogenation of crotonaldehyde catalysed by colloidally prepared PtSn nanoparticles. Physical Chemistry Chemical Physics, 17, 28186–28192. DOI: 10.1039/c5cp00280j
  18. Liang, S., Hao, C., Shi, Y. (2015). The Power of Single-Atom Catalysis. ChemCatChem, 7, 2559–2567. DOI: 10.1002/cctc.201500363
  19. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of nisn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Chemistry Letters, 41, 769–771. DOI: 10.1246/cl.2012.769
  20. Rodiansono, R., Khairi, S., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catalysis Science & Technology, 2, 2139–2145. DOI: 10.1039/c2cy20216f
  21. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9, 53–59. DOI: 10.9767/bcrec.9.1.5529.53-59
  22. Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016). Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports. Bulletin of Chemical Reaction Engineering & Catalysis, 11, 1–9. DOI: 10.9767/bcrec.11.1.393.1-9
  23. Rodiansono, R., Astuti, M.D., Mujiyanti, D.R., Santoso, U.T., Shimazu, S. (2018). Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 445, 52–60. DOI: 10.1016/j.mcat.2017.11.004
  24. Dutta, S., De, S., Saha, B., Alam, M.I. (2012). Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science & Technology, 2, 2025–2036. DOI: 10.1039/C2CY20235B
  25. Lange, J.-P., van der Heide, E., van Buijtenen, J., Price, R. (2012). Furfural—A Promising Platform for Lignocellulosic Biofuels. ChemSusChem, 5, 150–166. DOI: 10.1002/cssc.201100648
  26. Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., Royer, S. (2018). How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 118, 11023–11117. DOI: 10.1021/acs.chemrev.8b00134
  27. Astuti, M.D., Kristina, D., Rodiansono, R., Mujiyanti, D.R. (2020). One-pot Selective Conversion of Biomass-derived Furfural into Cyclopentanone/Cyclopentanol over TiO2 Supported Bimetallic Ni-M (M = Co, Fe) Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 15, 231–241. DOI: 10.9767/bcrec.15.1.6307.231-241
  28. O’Driscoll, Á., Curtin, T., Hernández, W.Y., Van Der Voort, P., Leahy, J.J. (2016). Hydrogenation of Furfural with a Pt-Sn Catalyst: The Suitability to Sustainable Industrial Application. Organic Process Research & Development, 20, 1917–1929. DOI: 10.1021/acs.oprd.6b00228
  29. Liao, F., Lo, T.W.B., Tsang, S.C.E. (2015). Recent Developments in Palladium-Based Bimetallic Catalysts. ChemCatChem, 7, 1998–2014. DOI: 10.1002/cctc.201500245
  30. Kovtunov, K.V., Barskiy, D.A., Salnikov, O.G., Khudorozhkov, A.K., Bukhtiyarov, A.V., Prosvirin, I.P., Gerasimov, E.Y., Bukhtiyarov, V.I., Koptyug, I.V. (2015). Strong Metal-Support Interactions for Pd Supported on TiO2 Catalysts in Heterogeneous Hydrogenation with Parahydrogen. ChemCatChem, 7, 2581–2584. DOI: 10.1002/cctc.201500618
  31. Pino, N., Sitthisa, S., Tan, Q., Souza, T., López, D., Resasco, D.E. (2017). Structure, activity, and selectivity of bimetallic Pd-Fe/SiO2 and Pd-Fe/γ-Al2O3 catalysts for the conversion of furfural. Journal of Catalysis, 350, 30–40. DOI: 10.1016/j.jcat.2017.03.016
  32. Sitthisa, S., Prasomsri, T.P., Sooknoi, T., Mallinson, R.G., Resasco, D.E. (2011). Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts. Journal of Catalysis, 280, 17–27. DOI: 10.1016/j.jcat.2011.02.006
  33. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Dordrecht, The Netherlands: Kluwer Academic Publishers. DOI: 10.1007/978-1-4020-2303-3
  34. Storck, S., Bretinger, H., Maier, W.F. (1998). Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A: General, 174, 137–146. DOI: 10.1016/S0926-860X(98)00164-1
  35. Aben, P.C. (1968). Palladium areas in supported catalysts. Determination of palladium surface areas in supported catalysts by means of hydrogen chemisorption. Journal of Catalysis, 10, 224–229. DOI: 10.1016/S0021-9517(68)80002-8
  36. Xu, Q., Kharas, K.C., Croley, B.J., Datye, A.K. (2011). The Sintering of Supported Pd Automotive Catalysts. ChemCatChem, 3, 1004–1014. DOI: 10.1002/cctc.201000392
  37. Lu, J., Fu, B., Kung, M.C., Xiao, G., Elam, J.W., Kung, H.H., Stair, P.C. (2012). Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science, 335, 1205–1208. DOI: 10.1126/science.1212906
  38. Gong, S., Chen, N., Nakayama, S., Qian, E.W. (2013). Isomerization of n-alkanes derived from jatropha oil over bifunctional catalysts. Journal of Molecular Catalysis A: Chemical, 370, 14–21. DOI: 10.1016/j.molcata.2012.11.019
  39. JCPDS-ICDD. (1991). Powder diffraction files, JCPDS-International center for diffraction data (JCPDS-ICDD)
  40. Chen, D., Sun, P., Liu, H., Yang, J. (2017). Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. Journal of Materials Chemistry A, 5, 4421–4429. DOI: 10.1039/c6ta10476b
  41. Wei, Z., Lou, J., Su, C., Guo, D., Liu, Y., Deng, S. (2017). An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to Γ-Valerolactone. ChemSusChem, 10, 1720–1732. DOI: 10.1002/cssc.201601769
  42. Gandini, A. (2010). Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polymer Chemistry, 1, 245–251. DOI: 10.1039/B9PY00233B
  43. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21, 2307–2315. DOI: 10.1039/c8gc03938k
  44. Date, N.S., Hengne, A.M., Huang, K.W., Chikate, R.C., Rode, C.V. (2018). Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chemistry, 20, 2027–2037. DOI: 10.1039/c8gc00284c
  45. Marinelli, T.B.L.W., Nabuurs, S., Ponec, V. (1995). Activity and selectivity in the reactions of substituted α,β-Unsaturated aldehydes. Journal of Catalysis, 151, 431–438. DOI: 10.1006/jcat.1995.1045

Last update: 2021-06-12 11:19:49

No citation recorded.

Last update: 2021-06-12 11:19:49

No citation recorded.