skip to main content

Fe-doped TiO2/Kaolinite as an Antibacterial Photocatalyst under Visible Light Irradiation

Anthoni B. Aritonang1 scopus Eka Pratiwi1Warsidah Warsidah2scopus S. I. Nurdiansyah2R. Risko2

1Department of Chemistry, Faculty of Mathematics and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia

2Department of Marine, Faculty of Mathematics and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia

Received: 8 Feb 2021; Revised: 1 Apr 2021; Accepted: 2 Apr 2021; Published: 30 Jun 2021; Available online: 7 Apr 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this work, undoped and Fe-doped TiO2 immobilized on kaolinite surface was successfully synthesized by sol-gel method with various Fe concentrations (0.05, 0.125, and 0.25 wt%). The effects of Fe doping into TiO2 lattice were thoroughly investigated by a diffuse reflectance UV-visible (DRS) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The optical band gap of undoped and Fe-doped TiO2/kaolinite is red shifted with respect to the incorporation of Fe3+ into the structure of TiO2 resulted band gap. The FTIR spectra shows a shift of peak at the wave number at 586 cm1 and 774 cm1 which is attribute of the Fe−O vibration as an indication of the formation of Fe-TiO2 bonds. Incorporation of Fe3+ cation into the TiO2 lattice replacing the Ti4+ ions, which induced a perturbation in anatase crystal structure, causes the change in the distance spacing of the crystal lattices dhkl(101) of 8.9632 to 7.9413. The enhanced photocatalytic performance was observed for Fe-doped TiO2/kaolinite compared with TiO2/kaolinite with respect to Escherichia coli growth inhibition in solution media under visible light irradiation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

 

Fulltext View|Download
Keywords: Fe-doped TiO2/kaolinite; photocatalyst; visible light; antibacterial; Escherichia coli
Funding: Tanjungpura University

Article Metrics:

  1. Ma, S., Zhan, S., Jia, Y., Zhou, Q. (2015). Superior antibacterial activity of Fe3O4-TiO2 nano sheets under solar light. ACS Applied Materials & Interfaces, 7(39), 21875–21883. DOI: 10.1021/acsami.5b06264
  2. Tsiampalis, A., Mantzavinos, D., Frontistis, Z., Binas, V., Kiriakidis, G. (2019). Degradation of sulfamethoxazole using iron-doped titania and simulated solar radiation. Catalysts, 9, 612. DOI: 10.3390/catal9070612
  3. Haghi, M., Hekmatafshar, M., Janipour, M.B., Gholizadeh, S.S., Faraz, M.K., Sayyadifar, F., Ghaedi, M. (2012). Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. International Journal of Advanced Biotechnology and Research, 3(3), 621–624
  4. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, (42), 4591–4602. DOI: 10.1016/j.watres.2008.08.015
  5. Cheng, T.C., Chang, C.Y., Chang, C.I., Hwang, C.J., Hsu, H.C., Wang, D.Y., Yao, K.S. (2008). Photocatalytic bactericidal effect of TiO2 film on fish pathogens. Surface and Coatings Technology, 203(5–7), 925–927. DOI: 10.1016/j.surfcoat.2008.08.022
  6. Ohtsu, N., Yokoi, K., Saito, A. (2015). Fabrication of Visible-Light-Responsive Photocatalytic Antibacterial Coating on Titanium through Anodic Oxidation in a Nitrate/Ethylene Glycol Electrolyte. Surface and Coatings Technology, 261, 97–102. DOI: 10.1016/j.surfcoat.2014.12.021
  7. Vymětalová, V., Remsa, J., Jelínek, M., Písařík, P., Mikšovský, J., Řasová, V. (2016). Antibacterial activity of Titanium dioxide and Ag-incorporated DLC thin film. Lékař a technika, 46(3), 65–68
  8. Marami, M., Farahmandjou, M., Khoshnevisan, K. (2018). Sol-Gel Synthesis of Fe-doped TiO2 Nanocrystals. Journal of Electronic Materials, 47(7), 1–8. DOI: 10.1007/s11664-018-6234-5
  9. Othman, S.H., Rashid, S.A., Ghazi, T.I.M., Abdullah, N. (2011). Fe-doped TiO2 nanoparticles produced via MOCVD: synthesis, characterization, and photocatalytic activity. Journal of Nanomaterials, 2011, 571601. DOI: 10.1155/2011/571601
  10. Dedkova, K., Matejova, K., Lang, J., Peikertova, P., Kutlakova, K.M., Neuwirthova, L., Frydrysek, K., Kukutschova, J. (2014). Antibacterial activity of kaolinite/nano TiO2 composites in relation to irradiation time. Journal of Photochemistry and Photobiology B: Biology, 135, 17–22. DOI: 10.1016/j.jphotobiol.2014.04.004
  11. Koci, K., Matejka, V., Kovar, P., Lacny, Z., Obalova, L. (2011). Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catalysis Today, 161, 105–109. DOI: 10.1016/j.cattod.2010.08.026
  12. Li, X., Peng, K., Chen, H., Wang, Z. (2018). TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Scientific Reports, 8, 11663–11673. DOI: 10.1038/s41598-018-29563-8
  13. Mora, L.D., Nassar, E.J., Bonfirm, L.F., Barbosa, L.V., da Silva, T.H., Trujillano, R., Ciuffi, J.K., González, B., Vicente, M.A., Gil, A., Rives, V., Perez-Bernal, M.E., Korili, S., Faria, E.H. (2019). White and red Brazilian São Simão’s kaolinite-TiO2 nanocomposites as catalysts for toluene from aqueous solutions. Materials, 12(23), 3943. DOI: 10.3390/ma12233943
  14. Listiani, D., Safar, A., Aritonang, A.B. (2019). Sintesis TiO2-kaolin dan uji aktivitas fotokatalisis untuk antibakteri staphylococcus aureus dan escherichia coli. Indonesia Journal Pure Application Chemistry, 2(3), 130–139
  15. Arshad, M., Qayum, A., Muhammad, S.J. (2018). Assessment of antioxidant and antibacterial activities of iron-titanium oxide nanoparticles synthesized in various solvents and their microscopic characterization. Pakistan Journal of Science, 70(2), 113–118
  16. Meng, D., Liu, X., Xie, Y., Du, Y., Yang, Y., Xiao, C. (2019). Antibacterial activity of visible light-activated TiO2 thin films with low level of Fe doping. Advances in Materials Science and Engineering, 2019, 5819805. DOI: 10.1155/2019/5819805
  17. Pratiwi, E., Harlia, H., Aritonang, A.B. (2020). Sintesis TiO2 terdoping Fe3+ untuk degradasi rhodamin B secara fotokatalisis dengan bantuan sinar tampak. Positron, 10(1), 57–63. DOI: 10.26418/positron.v10i1.37739
  18. Huang, W., Wang, J.Q., Song, H.Y., Zhang, Q., Liu, G.F. 2017. Chemical analysis and in vitro antimicrobial effects and mechanism of action of Trachyspermum copticum essential oil against Escherichia coli. Asian Pasific Journal of Tropical Medicine, 10(7), 663–669. DOI: 10.1016/j.apjtm.2017.07.006
  19. Al-Jawad, S.M.H., Taha, A.A., Salim, M.M., (2017). Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial activity. Optik, 142, 42–53. DOI: 10.1016/j.ijleo.2017.05.048
  20. Ghorbanpour, M., Feizi, A. (2019). Iron-doped TiO2 Catalysts with Photocatalytic Activity. Journal of Water and Environmental Nanotechnology, 4(1), 60–66
  21. Nasralla, N., Kompany, A., Yeganeh, M., Astut,i Y., Piticharoenphun, S., Shahtahmasebi, N., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method. Scientia Iranica, 20(3), 1018–1022. DOI: 10.1016/j.scient.2013.05.017
  22. Lucidi, M., Marsan, M., Pudda, F., Frangipani, E., Visca, P. (2019). Geometrical-optics approach to measure the optical density of bacterial cultures using a LED-based photometer. Biomedical Optics Express, 10(11), 5600–5610. DOI: 10.1364/BOE.10.005600
  23. Begot, C., Desnier, I., Daudin, J.D., Labadie, J.C., Lebert, A. (1996). Recommendations for calculating growth parameters by optical density measurements. Journal of Microbiological Methods, 25, 225–232. DOI: 10.1016/0167-7012(95)00090-9
  24. Stoyanova, A.M., Hitkova, H.Y., Ivanova, N.K., Bachvarova-Nedelcheva, A.D., Iordanova, R.S., Sredkova, M.P. (2013). Photocatalytic and antibacterial activity of Fe-doped TiO2 nanoparticles prepared by nonhydrolytic sol-gel method. Bulgarian Chemical Communications, 45(4), 497–504
  25. Kiwi, J., Rtimi, S. (2018). Mechanisms of the Antibacterial Effects of TiO2-FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings, 8(11), 391. DOI: 10.3390/coatings8110391
  26. Werapun, U., Pechwang, J. (2019). Synthesis and antimicrobial activity of Fe:TiO2 particles. Journal of Nano Research, 56, 28–38. DOI: 10.4028/www.scientific.net/JNanoR.56.28
  27. Mragui, A.E., Logvina, Y., da Silva, L.P., Zegaoui, O., Esteves da Silva, J.C.G. (2019). Synthesis of Fe- and Co-doped TiO2 with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials, 12(23), 3874. DOI: 10.3390/ma12233874
  28. Khan, M.A.M., Siwach, R., Kumar, S., Alhazaa, A.N. 2019. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue, Optics and Laser Technology, 118, 170-178
  29. Khan, M.A.M., Kumar, S., Alhazaa, A.N., Al-Gawati, M.A. (2018). Modifications in structural, morphological, optical and photocatalytic properties of ZnO: Mn nanoparticles by sol-gel protocol. Materials Science in Semiconductor Processing, 87, 134–141. DOI: 10.1016/j.mssp.2018.07.016
  30. Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Cen, J., Phanichphant, S. (2014). Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Scientific Reports, 4, 5757. DOI: 10.1038/srep05757
  31. Hosseini, S.A., Niaei, A., Salari, D. (2011). Production of Al2O3 from Kaolin. Open Journal of Physical Chemistry, 1(2), 23–27. DOI: 10.4236/ojpc.2011.12004
  32. Kutlakova, K.M., Tokarsky, J., Kovar, P., Vojteskovaa, S., Kovarova, A., Smetana, B., Kukutschova, J., Capkova, P., Matejka, V. (2011). Preparation and Characterization of Photoactive Composite Kaolinite/TiO2. Journal of Hazardous Materials, 188(1-3), 212–220. DOI: 10.1016/j.jhazmat.2011.01.106
  33. Lin, C.Y.W., Channei, D., Koshy, P., Nakaruk, A., Sorrell, C.C. (2012). Effect of Fe doping on TiO2 films prepared by spin coating. Ceramics International, 38, 3943-3946, doi: 10.1016/j.ceramint.2012.01.047
  34. Adyani, S.M., Ghorbani, M.A. (2018). A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials. Journal of Rare Earths, 36(1), 72–85. DOI: 10.1016/j.jre.2017.06.012
  35. Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M. (2006). Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 196–204. DOI: 10.1016/j.jphotochem.2005.10.017
  36. Komaraiah, D., Radha, E., Kalarikkal, N., Sivakumar, J., Ramana R., M.V., Sayanna, R. (2019). Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceramics International, 45(18B), 25060–25068. DOI: 10.1016/j.ceramint.2019.03.170
  37. Khan, M., Cao, W. (2013). Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: A combined experimental and theoretical study. Journal of Applied Physics, 114, 183514. DOI: 10.1063/1.4831658
  38. Heller, A.A., Spence, D.M. (2018). A rapid method for post-antibiotic bacterial susceptibility testing. PLoS ONE, 14(1), e0210534. DOI: 10.1371/journal.pone.0210534

Last update: 2021-06-13 17:03:21

No citation recorded.

Last update: 2021-06-13 17:03:21

No citation recorded.