skip to main content

Effect of Calcination Temperature on the Photocatalytic Activity of Zn2Ti3O8 Materials for Phenol Photodegradation

1Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, Indonesia

2Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, Indonesia

Received: 8 Feb 2021; Revised: 24 Mar 2021; Accepted: 24 Mar 2021; Available online: 25 Mar 2021; Published: 31 Mar 2021.
Editor(s): Is Fatimah, Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Zinc titanate (Zn2Ti3O8) is a bimetal oxide material that is especially attractive as a photocatalyst. In the preparation of the Zn2Ti3O8, the calcination temperature is a crucial parameter. Hence, in the present work, we aimed to synthesize the Zn2Ti3O8 materials from zinc(II) nitrate and titanium(IV) isopropoxide as precursors by using a sol-gel method and followed by calcination at 700, 900, and 1100 °C to give ZT-700, ZT-900, and ZT-100 materials, respectively. The ZT materials were characterized using Fourier transform infrared (FTIR), diffuse reflectance ultraviolet-visible (DR UV-vis), and fluorescence spectroscopies. It was confirmed that the ZT materials contained O−Ti−O, Zn−O−Ti, Zn−O, Ti−O−Ti, and Ti−O functional groups as shown from their FTIR spectra. Similar fluorescence properties were only observed on the ZT-700 and ZT-900. From the bandgap energy analysis, ZT-700 and ZT-900 contained spinel and cubic Zn2Ti3O8 (spl-Zn2Ti3O8 and c-Zn2Ti3O8) crystal phases), while ZT-1100 contained c-Zn2TiO4 and TiO2 rutile crystal phases. The kinetic analysis of photocatalytic phenol degradation showed that both ZT-700 and ZT-900 materials exhibited high photocatalytic activity with the reaction rate constants of 0.0353 and 0.0355 h1, respectively. These values were higher than that of the ZT-1100 (0.0206 h1). This study demonstrated that calcination at 700 and 900 °C resulted in the formation of the spl-Zn2Ti3O8 and c-Zn2Ti3O8 phases, which were effective as the photocatalyst, but the formation of c-Zn2TiO4 and rutile TiO2 at calcination of 1100 °C deteriorated the photocatalytic activity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Bimetal oxide; Calcination Temperature; Photocatalyst; Sol-gel; Zn2Ti3O8
Funding: Ministry of Research and Technology/National Research and Innovation Agency of Indonesia

Article Metrics:

  1. Ratnawati, R., Enjarlis, E., Husnil, Y.A., Christwardana, M., Slamet, S. (2020). Degradation of phenol in pharmaceutical wastewater using TiO2/pumice and O3/active carbon. Bull. Chem. React. Eng. 15(1), 146–154, doi: 10.9767/bcrec.15.1.4432.146-154
  2. Hayati, F., Isari, A.A., Fattahi, M., Anvaripour, B., Jorfi, S. (2018). Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO2 decorated on reduced graphene oxide nanocomposite: influential operating factors, mechanism, and electrical energy consumption. RSC Advances. 8(70), 40035–40053, doi: 10.1039/c8ra07936f
  3. Jay, L., Chirwa, E.M.N. (2018) Pathway analysis of phenol degradation by UV/TiO2 photocatalysis utilising the C-13 isotopic labelling technique. Chem. Eng. Trans. 70, 181–186, doi: 10.3303/CET1870031
  4. Badli, N.A., Ali, R., Bakar, W.A.W.A., Yuliati, L. (2017). Role of heterojunction ZrTiO4/ZrTi2O6/TiO2 photocatalyst towards the degradation of paraquat dichloride and optimization study by Box–Behnken design. Arab. J. Chem. 10(7), 935–943, doi: 10.1016/j.arabjc.2016.02.011
  5. Zhao, M., Bastakoti, B.P., Li, Y., Xu, H., Ye, J., Liu, Z., Yamauchi, Y. (2015). Mesoporous TiO2/Zn2Ti3O8 hybrid films synthesized by polymeric micelle assembly. Chem. Commun. 51(78), 14582–14585, doi: 10.1039/c5cc04903b
  6. Sutanto, N., Saharudin, K.A., Sreekantan, S., Kumaravel, V., Akil, H.M. (2019). Heterojunction catalysts g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity. J. Sol-Gel Sci. Technol. 93, 354–370, doi: 10.1007/s10971-019-05101-4
  7. Chen, F., Yu, C., Wei, L., Fan, Q., Ma, F., Zeng, J., Ji, H. (2019). Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr(VI) ions. Sci. Total Environ. 706, 136026, doi: 10.1016/j.scitotenv.2019.136026
  8. Sahu, A., Chaurashiya, R., Hiremath, K., Dixit, A. (2018). Nanostructured zinc titanate wide band gap semiconductor as a photoelectrode material for quantum dot sensitized solar cells. Sol. Energy. 163, 338–346, doi: 10.1016/j.solener.2018.01.092
  9. Platt, N.J., Kaye, K.M., Limburn, G.J., Cosham, S.D., Kulak, A.N., Palgrave, R.G., Hyetta, G. (2017). Order of magnitude increase in photocatalytic rate for hierarchically porous anatase thin films synthesized from zinc titanate coatings. Dalton Trans. 46(6), 1975–1985, doi: 10.1039/C6DT04431J
  10. Yang, J., Swisher, J.H. (1996). The phase stability of Zn2Ti3O8. Mater. Charact. 37(2–3), 153–159, doi: 10.1016/s1044-5803(96)00098-8
  11. Budigi, L., Nasina, M.R., Shaik, K., Amaravadi, S. (2015). Structural and optical properties of zinc titanates synthesized by precipitation method. J. Chem. Sci. 127(3), 509–518, doi: 10.1007/s12039-015-0802-5
  12. Arin, J., Thongtem, S., Phuruangrat, A., Thongtem, T. (2017). Template synthesis of Zn2TiO4 and Zn2Ti3O8 nanorods by hydrothermal-calcination combined processes. Mater. Lett. 193, 270–273, doi: 10.1016/j.matlet.2017.01.142
  13. Wang, L., Kang, H., Xue, D., Liu, C. (2009). Low-temperature synthesis of ZnTiO3 nanopowders. J. Cryst. Growth. 311(3), 611–614, doi: 10.1016/j.jcrysgro.2008.09.071
  14. Wang, C.L., Hwang, W.S., Chang, K.M., Ko, H.H., Hsi, C.S., Huang, H.H., Wang, M.C. (2011). Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer. Int. J. Mol. Sci. 12(2), 935–945, doi: 10.3390/ijms12020935
  15. Chang, Y.S., Chang, Y.H., Chen, I.G., Chen, G.J., Chai, Y.L., Fang, T.H., Wu, S. (2004). Synthesis, formation and characterization of ZnTiO3 ceramics. Ceram. Int. 30(8), 2183–2189, doi: 10.1016/j.ceramint.2004.01.002
  16. Yu, C., Chen, F., Zhou, W., Xie, Y., Zeng, D., Liu, Z., Wei, L., Yang, K., Li, D., (2019). A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties. Nanoscale. 11, 7720–7733, DOI: 10.1039/C9NR00709A
  17. Mohammadi, M.R., Fray, D.J. (2010). Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio. J. Eur. Ceram. Soc. 30(4), 947–961, doi: 10.1016/j.jeurceramsoc.2009.09.031
  18. Wang, J., Huang, J., Xie, H., Qu, A. (2014). Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Int. J. Hydrog. Energy. 39(12), 6354–6363, doi: 10.1016/j.ijhydene.2014.02.020
  19. Musić, S., Popović, S., Maljković, M., Dragčević, Đ. (2002). Influence of synthesis procedure on the formation and properties of zinc oxide. J. Alloys Compd. 347(1–2), 324–332, doi: 10.1016/s0925-8388(02)00792-2
  20. Liu, G., Li, G., Qiu, X., Li, L. (2009). Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation. J. Alloys Compd. 481(1–2), 492–497, doi: 10.1016/j.jallcom.2009.03.021
  21. Eskandarloo, H., Badiei, A., Behnajady, M.A., Tavakoli, A., Ziarani, G.M. (2016). Ultrasonic-assisted synthesis of Ce doped cubic–hexagonal ZnTiO3 with highly efficient sonocatalytic activity. Ultrason. Sonochem. 29, 258–269, doi: 10.1016/j.ultsonch.2015.10.004
  22. Mrázek, J., Spanhel, L., Chadeyron, G., Matějec, V. (2010). Evolution and Eu3+ doping of sol-gel derived ternary ZnxTiyOz - nanocrystals. J. Phys. Chem. C. 114(7), 2843–2852, doi: 10.1021/jp9036217
  23. Makuła, P., Pacia, M., Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817, doi: 10.1021/acs.jpclett.8b02892
  24. Conesa, J.C. (2013). Band structures and nitrogen doping effects in zinc titanate photocatalysts. Catal. Today. 208, 11–18, doi: 10.1016/j.cattod.2012.08.039
  25. Mebrek, A., Alleg, S., Benayache, S., Benabdeslem, M. (2018). Preparation and characterization of spinel type Zn2TiO4 nanocomposite. Ceram. Int. 44(9), 10921–10928, doi: 10.1016/j.ceramint.2018.03.153
  26. García-Ramírez, E., Mondragón-Chaparro, M., Zelaya-Angel, O. (2012). Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films. Appl. Phys. A. 108(2), 291–297, doi: 10.1007/s00339-012-6890-x
  27. Zhu, T., Gao, S.-P. (2014). The stability, electronic structure, and optical property of TiO2 polymorphs. J. Phys. Chem. C. 118(21), 11385–11396, doi: 10.1021/jp412462m
  28. Li, B., Wu, S., Gao, X. (2020). Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: A review. Nanotechnol. Rev. 9(1), 1080–1103, doi: 10.1515/ntrev-2020-0085

Last update:

No citation recorded.

Last update:

No citation recorded.