skip to main content

Cellulose and TiO2–ZrO2 Nanocomposite as a Catalyst for Glucose Conversion to 5-EMF

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia

Received: 8 Feb 2021; Revised: 15 Apr 2021; Accepted: 16 Apr 2021; Available online: 18 Apr 2021; Published: 30 Jun 2021.
Editor(s): Is Fatimah, Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

This work demonstrated the use of green material catalysts, produced from Sengon sawdust waste, to obtain nanocellulose biopolymers. The green material catalysts were utilized as catalysts support of TiO2−ZrO2 binary oxide in the form of nanocomposite materials with superior synergistic properties. The isolation of nanocellulose was achieved using a hydrolysis method with a yield of 63.40%. The TiO2 and ZrO2 nanoparticles have average particle sizes of around 25 and 15 nm, respectively, and the binary oxides of TiO2–ZrO2 pretained an average particle size of 30 nm were used. Furthermore, the nanocellulose combined with the TiO2−ZrO2 binary oxide had formed a cellulose/TiO2−ZrO2 nanocomposite with an average particle size of 30 nm. This indicates that the supporting nanocellulose can stabilize the nanoparticles and avoid aggregation. Moreover, the nanocomposites can be used as a catalyst for the conversion of glucose to 5-ethoxymethylfurfural (5-EMF). The catalytic activity increased with the nanoparticle effect obtained ZrO2, TiO2, TiO2-ZrO2, and cellulose and TiO2-ZrO2 nanocomposite, in 15.50%, 20.20%, 35.20%, and 45.50% yields, respectively. The best yield of 5-EMF was 45.50%, with reaction conditions of 1:1 TiO2–ZrO2 ratio, 4 h reaction time, and 160 °C reaction temperature. The use of nanocellulose biopolymer generated from Sengon sawdust waste in Indonesia provides a promising catalyst support material as an alternative green catalyst. In addition, the glucose carbohydrates can be converted to biofuel feedstocks in the development of a renewable alternative energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Catalyst; Glucose; Nanocellulose; Nanocomposite; 5-ethoxymethylfurfural
Funding: Ministry of Research and Technology/National Research and Innovation under contract PDUPT Grant No. NKB-170/UN2.RST/ HKP.05.00/2021

Article Metrics:

  1. Vallejos, M.E., Felissia, F.E., Area, M.C., Ehman, N.V., Tarrés, Q., Mutjé, P. (2016). Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydrate Polymers, 139, 99–105. DOI: 10.1016/j.carbpol.2015.12.004
  2. Shaheen, T.I., Emam, H.E. (2018). Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis. International Journal of Biological Macromolecules, 107(B), 1599–1606. DOI: 10.1016/j.ijbiomac.2017.10.028
  3. Martinez Lopez, Y., Paes, J.B., Gustave, D., Gonçalves, F.G., Méndez, F.C., Theodoro Nantet, A.C. (2020). Production of wood-plastic composites using Cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products - A sustainable approach for cleaner production in Cuba. Journal of Cleaner Production, 244, 118723. DOI: 10.1016/j.jclepro.2019.118723
  4. Trisnawati, L., Helmiyati, H. (2020). Cellulose-Fe3O4 nanocomposite based on rice husk as catalyst for synthesis of methyl ester from waste cooking oil. IOP Conference Series: Materials Science and Engineering, 763, 012012. DOI: 10.1088/1757-899X/763/1/012012
  5. Helmiyati, H., Anggraini, Y. (2019). Nanocomposites comprising cellulose and nanomagnetite as heterogeneous catalysts for the synthesis of biodiesel from oleic acid. International Journal of Technology, 10(4), 798–807. DOI: 10.14716/ijtech.v10i4.2597
  6. Azahra, S.N.A.R., Helmiyati, H. (2020). Synthesis of nanocomposites cellulose-Fe3O4/ZnO as novel green catalyst for biodiesel production from coconut oil. IOP Conference Series: Materials Science and Engineering, 959, 012016. DOI: 10.1088/1757-899X/959/1/012016
  7. Ma, X., Liu, F., Helian, Y., Li, C., Wu, Z., Li, H., Chu, H., Wang, Y., Wang, Y., Lu, W., Guo, M., Yu, M., Zhou, S. (2021). Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: a review. Energy Conversion and Management, 229, 113760. DOI: 10.1016/j.enconman.2020.113760
  8. Alipour, S., Omidvarborna, H., Kim, D.S. (2017). A review on synthesis of alkoxymethyl furfural, a biofuel candidate. Renewable and Sustainable Energy Reviews, 71, 908–926. DOI: 10.1016/j.rser.2016.12.118
  9. Silahua-Pavón, A.A., Espinosa-González, C.G., Ortiz-Chi, F., Pacheco-Sosa, J.G., Pérez-Vidal, H., Arévalo-Pérez, J.C., Godavarthi, S., Torres-Torres, J.G. (2019). Production of 5-HMF from glucose using TiO2-ZrO2 catalysts: effect of the sol-gel synthesis additive. Catalysis Communications, 129, 105723. DOI: 10.1016/j.catcom.2019.105723
  10. He, R., Huang, X., Zhao, P., Han, B., Wu, T., Wu, Y. (2018). The synthesis of 5-hydroxymethylfurfural from glucose in biphasic system by phosphotungstic acidified titanium–zirconium dioxide. Waste and Biomass Valorization, 9(4), 657–668. DOI: 10.1007/s12649-017-0024-9
  11. Kargarzadeh, H., Johar, N., Ahmad, I. (2017). Starch biocomposite film reinforced by multiscale rice husk fiber. Composites Science and Technology, 151, 147–155. DOI: 10.1016/j.compscitech.2017.08.018
  12. Jiang, F., Kondo, T., Hsieh, Y.-L. (2016). Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustainable Chemistry and Engineering, 4(3), 1697–1706. DOI: 10.1021/acssuschemeng.5b01653
  13. Helmiyati, H., Masriah, I. (2019). Preparation of cellulose/CaO-Fe2O3 nanocomposites as catalyst for fatty acid methyl ester production. AIP Conference Proceedings, 2168, 020062. DOI: 10.1063/1.5132489
  14. Kumar, T.S.M., Rajini, N., Reddy, K.O., Rajulu, A.V., Siengchin, S., Ayrilmis, N. (2018). All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. International Journal of Biological Macromolecules, 112, 1310–1315. DOI: 10.1016/j.ijbiomac.2018.01.167
  15. Prado, K.S., Spinacé, M.A.S. (2019). Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules, 122, 410–416. DOI: 10.1016/j.ijbiomac.2018.10.187
  16. Liu, C., Li, B., Du, H., Lv, D., Zhang, Y., Yu, G., Mu, X., Peng, H. (2016). Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers, 151, 716–724. DOI: 10.1016/j.carbpol.2016.06.025
  17. Zhang, J., Li, L., Li, Y., Yang, C. (2017). Microwave-assisted synthesis of hierarchical mesoporous Nano-TiO2/cellulose composites for rapid adsorption of Pb2+. Chemical Engineering Journal, 313, 1132–1141. DOI: 10.1016/j.cej.2016.11.007
  18. Grządka, E., Matusiak, J. (2020). Changes in the CMC/ZrO2 system properties in the presence of hydrocarbon, fluorocarbon and silicone surfactants. Journal of Molecular Liquids, 303, 112699. DOI: 10.1016/j.molliq.2020.112699
  19. Maleki, A., Jafari, A.A., Yousefi, S. (2017). Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydrate Polymers, 175, 409–416. DOI: 10.1016/j.carbpol.2017.08.019
  20. Helmiyati, H., Dini, F.W. (2018). Synthesis and application of nanocomposite based on Nano sodium alginate from brown seaweed impregnation TiO2 as a catalyst for synthesis 5-hydroxymethylfurfural from fructose. AIP Conference Proceedings, 2023, 020101. DOI: 10.1063/1.5064098
  21. Lestari, I., Helmiyati, H. (2020). Calcium alginate-TiO2/SiO2 nanocomposite for glucose conversion to 5-hydroxymethylfurfural. IOP Conference Series: Materials Science and Engineering, 763, 012037. DOI: 10.1088/1757-899X/763/1/012037
  22. Helmiyati, H., Abbas, G.H., Budiman, Y., Ramadhani, S. (2020). Synthesis of MgFe2O4-MgO nanocomposite: influence of MgO on the catalytic activity of magnesium ferrite in biodiesel production. Rasayan Journal of Chemistry, 13(1), 298–305. DOI: 10.31788/RJC.2020.1315497
  23. Zuo, M., Jia, W., Feng, Y., Zeng, X., Tang, X., Sun, Y., Lin, L. (2021). Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent. Renewable Energy, 164, 23–33. DOI: 10.1016/j.renene.2020.09.019
  24. Zhang, J., Dong, K., Luo, W., Guan, H. (2018). Catalytic upgrading of carbohydrates into 5-ethoxymethylfurfural using SO3H functionalized hyper-cross-linked polymer based carbonaceous materials. Fuel, 234, 664–673. DOI: 10.1016/j.fuel.2018.07.060
  25. Chen, B., Yan, G., Chen, G., Feng, Y., Zeng, X., Sun, Y., Tang, X., Lei, T., Lin, L. (2020). Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy, 2(1), 1–13. DOI: 10.1186/s42500-020-00012-5
  26. Mushtaq, K., Saeed, M., Gul, W., Munir, M., Firdous, A., Yousaf, T., Khan, K., Sarwar, H.M.R., Riaz, M.A., Zahid, S. (2020). Synthesis and characterization of TiO2 via sol-gel method for efficient photocatalytic degradation of antibiotic ofloxacin. Inorganic and Nano-Metal Chemistry, 50(7), 580–586. DOI: 10.1080/24701556.2020.1722695
  27. Chintaparty, C.R. (2016). Influence of calcination temperature on structural, optical, dielectric properties of Nano zirconium oxide. Optik, 127(11), 4889–4893. DOI: 10.1016/j.ijleo.2016.02.014
  28. Kambur, A., Pozan, G.S., Boz, I. (2012). Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles. Applied Catalysis B, 115–116, 149–158. DOI: 10.1016/j.apcatb.2011.12.012
  29. Kanakaraju, D., Ravichandar, S., Lim, Y.C. (2017). Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper. Journal of Environmental Sciences (China), 55, 214–223. DOI: 10.1016/j.jes.2016.05.043
  30. Chen, T., Peng, L., Yu, X., He, L. (2018). Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel, 219, 344–352. DOI: 10.1016/j.fuel.2018.01.129
  31. Zuo, M., Le, K., Feng, Y., Xiong, C., Li, Z., Zeng, X., Tang, X., Sun, Y., Lin, L. (2018). An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Industrial Crops and Products, 112, 18–23. DOI: 10.1016/j.indcrop.2017.11.001
  32. Helmiyati, H., Fitriyani, A., Meyanti, F. (2017). The copolimeryzation synthesis and swelling capacity of cellulose-poly superabsorbent (acrylic acid-co-acrylamide) based on rice straw. IOP Conference Series: Materials Science and Engineering, 188, 012051. DOI: 10.1088/1757-899X/188/1/012051
  33. Helmiyati, H., Suci, R.P. (2019). Nanocomposite of cellulose-ZnO/SiO2 as catalyst biodiesel methyl ester from virgin coconut oil. AIP Conference Proceedings, 2168, 020063. DOI: 10.1063/1.5132490
  34. Bauli, C.R., Rocha, D.B., de Oliveira, S.A., Rosa, D.S. (2019). Cellulose nanostructures from wood waste with low input consumption. Journal of Cleaner Production, 211, 408–416. DOI: 10.1016/j.jclepro.2018.11.099
  35. Martakov, I.S., Torlopov, M.A., Mikhaylov, V.I., Krivoshapkina, E.F., Silant’ev, V.E., Krivoshapkin, P.V. (2018). Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. Journal of Sol-Gel Science and Technology, 88, 13–21. DOI: 10.1007/s10971-017-4447-3
  36. Gong, J., Katz, M.J., Kerton, F.M. (2018). Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal-organic frameworks using microwave heating. RSC Advances, 8(55), 31618–31627. DOI: 10.1039/C8RA06021E

Last update:

No citation recorded.

Last update:

No citation recorded.