1Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, Indonesia
2Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, Indonesia
BibTex Citation Data :
@article{BCREC10319, author = {Yehezkiel Kurniawan and Leny Yuliati}, title = {Activity Enhancement of P25 Titanium Dioxide by Zinc Oxide for Photocatalytic Phenol Degradation}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {16}, number = {2}, year = {2021}, keywords = {Electron-hole recombination; P25 TiO2; Phenol degradation; Photocatalyst; ZnO}, abstract = { As a benchmark photocatalyst, P25 titanium dioxide (TiO 2 ) nanomaterial has been widely reported for its remarkable photocatalytic activity under ultraviolet (UV) irradiation. However, approaches to further improve the photocatalytic activity of the P25 TiO 2 are still required. In the present work, we reported the activity enhancement of the P25 TiO 2 up to more than five times higher rate constant for phenol degradation when the P25 TiO 2 was coupled with zinc oxide (ZnO). The composites were prepared by a physical mixing method of P25 TiO 2 and ZnO with various weight ratios of 1:0.5, 1:1, and 1:2. The composite materials were then characterized using X-ray diffraction (XRD), diffuse-reflectance ultraviolet-visible (DR UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopies. All the composites gave better activity than the P25 TiO 2 , in which the TiO 2 /ZnO 1:1 composite material exhibited the highest first-order reaction rate constant (0.43 h − 1 ). This remarkable enhanced degradation rate was much higher than that of the unmodified TiO 2 (0.08 h − 1 ) and ZnO (0.13 h -1 ). The fluorescence study revealed that the electron-hole recombination on the P25 TiO 2 could be suppressed by the ZnO, which would be the reason for such activity enhancement. A study on the effect of the scavenger showed that the hydroxyl radicals played a crucial role in the photocatalytic phenol degradation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {310--319} doi = {10.9767/bcrec.16.2.10319.310-319}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/10319} }
Refworks Citation Data :
As a benchmark photocatalyst, P25 titanium dioxide (TiO2) nanomaterial has been widely reported for its remarkable photocatalytic activity under ultraviolet (UV) irradiation. However, approaches to further improve the photocatalytic activity of the P25 TiO2 are still required. In the present work, we reported the activity enhancement of the P25 TiO2 up to more than five times higher rate constant for phenol degradation when the P25 TiO2 was coupled with zinc oxide (ZnO). The composites were prepared by a physical mixing method of P25 TiO2 and ZnO with various weight ratios of 1:0.5, 1:1, and 1:2. The composite materials were then characterized using X-ray diffraction (XRD), diffuse-reflectance ultraviolet-visible (DR UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopies. All the composites gave better activity than the P25 TiO2, in which the TiO2/ZnO 1:1 composite material exhibited the highest first-order reaction rate constant (0.43 h−1). This remarkable enhanced degradation rate was much higher than that of the unmodified TiO2 (0.08 h−1) and ZnO (0.13 h-1). The fluorescence study revealed that the electron-hole recombination on the P25 TiO2 could be suppressed by the ZnO, which would be the reason for such activity enhancement. A study on the effect of the scavenger showed that the hydroxyl radicals played a crucial role in the photocatalytic phenol degradation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)