skip to main content

Activity Enhancement of P25 Titanium Dioxide by Zinc Oxide for Photocatalytic Phenol Degradation

Yehezkiel Steven Kurniawan1orcid scopus Leny Yuliati2 orcid scopus

1Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, Indonesia

2Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, Indonesia

Received: 8 Feb 2021; Revised: 8 Apr 2021; Accepted: 9 Apr 2021; Published: 30 Jun 2021; Available online: 12 Apr 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

As a benchmark photocatalyst, P25 titanium dioxide (TiO2) nanomaterial has been widely reported for its remarkable photocatalytic activity under ultraviolet (UV) irradiation. However, approaches to further improve the photocatalytic activity of the P25 TiO2 are still required. In the present work, we reported the activity enhancement of the P25 TiO2 up to more than five times higher rate constant for phenol degradation when the P25 TiO2 was coupled with zinc oxide (ZnO). The composites were prepared by a physical mixing method of P25 TiO2 and ZnO with various weight ratios of 1:0.5, 1:1, and 1:2. The composite materials were then characterized using X-ray diffraction (XRD), diffuse-reflectance ultraviolet-visible (DR UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopies. All the composites gave better activity than the P25 TiO2, in which the TiO2/ZnO 1:1 composite material exhibited the highest first-order reaction rate constant (0.43 h1). This remarkable enhanced degradation rate was much higher than that of the unmodified TiO2 (0.08 h1) and ZnO (0.13 h-1). The fluorescence study revealed that the electron-hole recombination on the P25 TiO2 could be suppressed by the ZnO, which would be the reason for such activity enhancement. A study on the effect of the scavenger showed that the hydroxyl radicals played a crucial role in the photocatalytic phenol degradation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Electron-hole recombination; P25 TiO2; Phenol degradation; Photocatalyst; ZnO
Funding: Ministry of Research and Technology/National Research and Innovation Agency of Indonesia

Article Metrics:

  1. Babich, H., Davis, D.L. (1981). Phenol: A review of environmental and health risks. Regulatory Toxicology and Pharmacology, 1, 90–109. DOI: 10.1016/0273-2300(81)90071-4
  2. Issabayeva, G., Hang, S.Y., Wong, M.C., Aroua, M.K. (2018). A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Reviews in Chemical Engineering, 34, 855–873. DOI: 10.1515/revce-2017-0007
  3. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R., Hashib, M.A. (2010). Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 261, 3–18. DOI: 10.1016/j.desal.2010.04.062
  4. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R., Hashib, M.A. (2010). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A review. Water, Air, & Soil Pollution, 215, 3–29. DOI: 10.1007/s11270-010-0456-3
  5. Poi, G., Aburto-Medina, A., Mok, P.C., Ball, A.S., Shahsavari, E. (2017). Bioremediation of phenol-contaminated industrial wastewater using a bacterial consortium-from laboratory to field. Water, Air & Soil Pollution, 228, 89. DOI: 10.1007/s11270-017-3273-0
  6. Khan, M.M., Adil, S.F., Al-Mayouf, A. (2015). Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 19, 462–464. DOI: 10.1016/j.jscs.2015.04.003
  7. Arora, A.K., Jaswal, V.S., Singh, K., Singh, R. (2016). Applications of metal/mixed metal oxides as photocatalyst: A review. Oriental Journal of Chemistry, 32, 2035–2042. DOI: 10.13005/ojc/320430
  8. Yemmireddy, V.K., Hung, Y.-C. (2017). Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety–Opportunities and challenges. Comprehensive Reviews in Food Science and Food Safety, 15, 617–631. DOI: 10.1111/1541-4337.12267
  9. Pieczyńska, A., Malankowska, A., Bajorowicz, B., Gołąbiewska, A., Grabowska, E., Nadolna, J., Marchelek., M., Kobylański, M.P., Paszkiewicz-Gawron, M., Mazierski, P., Zaleska-Medynska, A., (2018). Metal oxide-based photocatalysis Fundamentals and prospects for application, 1st edition. Netherlands: Elsevier
  10. Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A.M., Karuppuchamy, S. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 828, 154281. DOI: 10.1016/j.jallcom.2020.154281
  11. Yuliati, L., Siah, W.R., Roslan, N.A., Shamsuddin, M., Lintang, H.O. (2016). Modification of titanium dioxide nanoparticles with copper oxide co-catalyst for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Malaysian Journal of Analytical Science, 20, 171–178. DOI: 10.17576/mjas-2016-2001-18
  12. Yuliati, L., Hasan, N., Lintang, H.O. (2020). Copper oxide modification to improve the photocatalytic activity of titanium dioxide nanoparticles: P25 versus P90. IOP Conference Series: Materials Science and Engineering, 902, 012020. DOI: 10.1088/1757-899X/902/1/012010
  13. Yuliati, L., Roslan, N.A., Siah, W.R., Lintang, H.O. (2017). Cobalt oxide-modified titanium dioxide nanoparticles photocatalyst for degradation of 2,4-dichlorophenoxyacetic acid. Indonesian Journal of Chemistry, 17, 284–290. DOI: 10.22146/ijc.22624
  14. Siah, W.R., Lintang, H.O., Shamsuddin, M., Yuliati, L. (2016). High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles. IOP Conference Series: Material Science and Engineering, 107, 012005. DOI: 10.1088/1757-899X/107/1/012005
  15. Nakata, K., Fujishima, A. (2012). TiO2 photocatalysis: design and applications. Journal of Photochemistry Photobiology C: Photochemistry Reviews, 13, 169–189. DOI: 10.1016/j.jphotochemrev.2012.06.001
  16. Kurniawan, Y.S., Anggraeni, K., Indrawati, R., Yuliati, L. (2020). Functionalization of titanium dioxide through dye-sensitizing method utilizing red amaranth extract for phenol photodegradation. IOP Conference Series: Material Science and Engineering, 902, 012029. DOI: 10.1088/1757-899X/902/1/012029
  17. Khang, K.C.L., Hatta, M.H.M., Lee, S.L., Yuliati, L. (2018). Photocatalytic removal of phenol over mesoporous ZnO/TiO2 composites. Jurnal Teknologi (Sciences and Engineering), 80, 153–160. DOI: 10.11113/jt.v80.11209
  18. Siwinska-Stefanska, K., Kubiaka, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga, S., Jesionowski, T. (2018). TiO2-ZnO binary oxide systems: comprehensive characterization and tests of photocatalytical activity. Materials, 11, 841. DOI: 10.3390/ma11050841
  19. Yuliati, L., Salleh, A.M., Hatta, M.H.M., Lintang, H.O. (2018). Effect of preparation methods on the activity of titanium dioxide-carbon nitride composites for photocatalytic degradation of salicylic acid. IOP Conference Series: Materials Science and Engineering, 349, 012033. DOI: 10.1088/1757-899X/349/1/012033
  20. Ayed, S., Belgacem, R.B., Zayani, J.O., Matoussi, A. (2016). Structural and optical properties of ZnO/TiO2 composites. Superlattices and Microstructures, 91, 118–128. DOI: 10.1016/j.spmi.2016.01.004
  21. Lu, P.J., Huang, S.C., Chen, Y.P., Chiueh, L.C., Shih, D.Y.C. (2015). Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. Journal of Food and Drug Analysis, 23, 587–594. DOI: 10.1016/j.jfda.2015.02.009
  22. Supriyanto, A., Kurniawan, D., Cari, C. (2020). Pengaruh perbandingan komposisi ZnO dan TiO2 dalam Dye-Sensitized Solar Cell (DSSC) pada dye kangkong (Ipomea aquatica). Prosiding Seminar Nasional Fisika dan Aplikasinya, 1−9
  23. Hussin, F., Lintang, H.O., Lee, S.L., Yuliati, L. (2018). Highly efficient zinc oxide-carbon nitride composite photocatalysts for degradation of phenol under UV and visible light irradiation. Malaysian Journal of Fundamental and Applied Sciences, Special issue on chromatography and other analytical techniques, 159–163. DOI: 10.11113/mjfas.v14n1-2.974
  24. Abuzerr, S., Darwish, M., Mohammadi, A., Hosseini, S.S., Mahvi, A.H. (2018). Enhancement of reactive red 198 dye photocatalytic degradation using physical mixtures of ZnO-graphene nanocomposite and TiO2 nanoparticles: an optimized study by response surface methodology. Desalination and Water Treatment, 135, 290–301. DOI: 10.5004/dwt.2018.232.59
  25. Makuła, P., Pacia, M., Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. The Journal of Physical Chemistry Letters, 9, 6814–6817. DOI: 10.1021/acs.jpclett.8b02892
  26. Kołodziejczak-Radzimska, A., Markiewicz, E., Jesionowski, T. (2012). Structural characterization of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012, 656353. DOI: 10.1155/2012/656353
  27. Sethi, D., Sakthivel, R. (2017). ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli. Journal of Photochemistry and Photobiology B: Biology, 168, 117–123. DOI: 10.1016/j.photobiol.2017.02.005
  28. Devi, P.G., Velu, A.S. (2016). Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. Journal of Theory and Applied Physics, 10, 233–240. DOI: 10.1007/s40094-016-0221-0
  29. Babu, K.S., Reddy, A.R., Sujatha, C., Reddy, K.V., Mallika, A.N. (2013). Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramics, 2, 260–265. DOI: 10.1007/s40145-013-0069-6
  30. Chen, X., Wu, Z., Liu, D., Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12, 143. DOI: 10.1186/s11671-017-1904-4
  31. Pasikhani, J.V., Gilani, N., Pirbazari, A.E. (2018). Improvement the wastewater purification by TiO2 nanotube arrays: the effect of etching-step on the photo-generated charge carriers and photocatalytic activity of anodic TiO2 nanotubes. Solid State Sciences, 84, 57–74. DOI: 10.1016/j.solidstatesciences.2018.08.003
  32. Lin, H.Y., Chou, Y.Y., Cheng, C.L., Chen, Y.F. 2007. Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites. Optics Express, 15, 13832. DOI: 10.1364/OE.15.013832
  33. Wang, R., Tan, H., Zhao, Z., Zhang, G., Song, L., Dong, W., Sun, Z. 2014. Stable ZnO@TiO2 core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties. Journal of Materials Chemistry, 2, 7313–7318. DOI: 10.1039/C4TA00455H
  34. Lee, Y.E., Cao, T., Torruellas, C., Kozlowski, M.C. (2014). Selective oxidative homo- and cross-coupling of phenols with aerobic catalysts. Journal of American Chemical Society, 136, 6782–6785. DOI: 10.1021/ja500183z

Last update: 2021-06-13 15:51:22

No citation recorded.

Last update: 2021-06-13 15:51:22

No citation recorded.