skip to main content

Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production

Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Received: 8 Feb 2021; Revised: 24 Mar 2021; Accepted: 25 Mar 2021; Available online: 25 Mar 2021; Published: 31 Mar 2021.
Editor(s): Is Fatimah, Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Microalgae, as a potential raw material for biofuel, has several advantages compared to other biomass. One effective way to convert microalgae into biofuel is by thermal cracking or pyrolysis, and using a catalyst or not. So far, studies on the use of microalgae, that are converted into biofuels, is still use highly concentrated catalysts in packed bed reactors, which is not economical. Therefore, the aim of this study is to convert Chlorella sp. into biofuels with conventional pyrolysis without and using an activated carbon catalyst using packed bed reactor with bubble column. The reaction temperature is 400–600 °C, pyrolysis time is 1–4 hours, and the active carbon catalyst concentration is 0–2%. The 200 grams of Chlorella sp. and the catalyst was mixed in a fixed bed reactor under vacuum (−3 mm H20) condition. Next, we set the reaction temperature. When the temperature was reached, the pyrolysis was begun. After certain time was reached, the pyrolysis produced a liquid oil product. Oil products are measured for density and viscosity. The results showed that the conventional pyrolysis succeeded in converting microalgae Chlorella sp. into liquid biofuels. The highest yield of total liquid oil is obtained 50.2 % (heavy fraction yield, 43.75% and light fraction yield, 6.44%) at the highest conditions which was obtained with 1% activated carbon at a temperature and pyrolysis time of 3 hours. Physical properties of liquid biofuel are density of 0.88 kg/m3 and viscosity of 5.79 cSt. This physical properties are within the range of the national biodiesel standard SNI 7182-2012. The packed bed reactor completed with bubble column is the best choice for converting biofuel from microalgae, because it gives different fractions, so that it is easier to process further to the commercial biofuel stage. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Pyrolysis; Microalgae; Chlorella sp.; Activated carbon; Biofuel
Funding: Ministry of Education and Culture of the Republic of Indonesia

Article Metrics:

  1. Li, L., Ma, X., Xu, Q., Hu, Z. (2013). Influence of microwave power, metal oxides and metal salts on the pyrolysis of algae, Bioresource Technology, 142, 469–474, doi: 10.1016/j.biortech.2013.05.080
  2. Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A. (2019). Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis, 142, 104599, doi: 10.1016/j.jaap.2019.04.015
  3. Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., Ruan, R. (2011). Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource Technology, 102(7), 4890–4896, doi: 10.1016/j.biortech.2011.01.055
  4. Motasemi, F., Afzal, M.T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317–330, doi: 10.1016/j.rser.2013.08.008
  5. Mushtaq, F., Mat, R., Ani, F.N. (2014). A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews, 39, 555–574, doi: 10.1016/j.rser.2014.07.073
  6. Morgan, H.M., Bu, Q., Liang, J., Liu, Y., Mao, H., Shi, A., Lei, H., Ruan, R. (2017). A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresource Technology, 230, 112–121, doi: 10.1016/j.biortech.2017.01.059
  7. Huang, Y.F., Chiueh, P.T., Kuan, W.H., Lo, S.L. (2013). Microwave pyrolysis of rice straw: Products, mechanism, and kinetics. Bioresource Technology, 142, 620–624, doi: 10.1016/j.biortech.2013.05.093
  8. Luque, R., Herrero-Davila, L., Campelo, J.M., Clark, J.H., Hidalgo, J.M., Luna, D., Marinas, J.M., Romero, A.A. (2008). Biofuels: A technological perspective. Energy and Environmental Science, 1(5), 542–564, doi: 10.1039/b807094f
  9. Miao, X., Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846, doi: 10.1016/j.biortech.2005.04.008
  10. Yang, C., Li, R., Cui, C., Liu, S., Qiu, Q., Ding, Y., Wu, Y., Zhang, B. (2016). Catalytic hydroprocessing of microalgae-derived biofuels: A review. Green Chemistry, 18(13), 3684–3699, doi: 10.1039/c6gc01239f
  11. Ananyev, G., Carrieri, D., Dismukes, G.C. (2008). Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the Cyanobacterium ‘Arthrospira (Spirulina) maxima’. Applied and Environmental Microbiology, 74(19), 6102–6113, doi: 10.1128/AEM.01078-08
  12. Kalsum, U., Kusuma, H.S., Roesyadi, A., Mahfud, M. (2018). Production biodiesel via in-situ transesterification from chlorella sp. Using Microwave with base catalyst. Korean Chemical Engineering Research, doi: 10.9713/kcer.2018.56.5.773
  13. Kalsum, U., Kusuma, H.S., Roesyadi, A., Mahfud, M. (2019). Lipid extraction from spirulina platensis using microwave for biodiesel production. Korean Chemical Engineering Research, 57(2), 301–304, doi: 10.9713/kcer.2019.57.2.301
  14. Hu, Z., Ma, X., Chen, C. (2012). A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology, 107, 487–493, doi: 10.1016/j.biortech.2011.12.095
  15. Mahfud, M., Kalsum, U., Aswie, V. (2020). Biodiesel production through catalytic microwave in-situ transesterification of microalgae (Chlorella sp.). International Journal of Renewable Energy Development, 9(1), 113–117, doi: 10.14710/ijred.9.1.113-117
  16. Chaiwong, K., Kiatsiriroat, T., Vorayos, N., Thararax, C. (2013). Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 6, 600–606, doi: 10.1016/j.biombioe.2013.05.035
  17. Menéndez, J. A.; Inguanzo, M.; Pis, J. J. (2002). Microwave-induced pyrolysis of sewage sludge, Water Research, 36(13), 3261–3264. doi: 10.1016/S0043-1354(02)00017-9
  18. Thahir, R., Altway, A., Juliastuti, S.R., Susianto, S. (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports, 5, 70–77, doi: 10.1016/j.egyr.2018.11.004
  19. Menéndez, J.A., Domínguez, A., Fernández, Y., Pis, J.J. (2007). Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls. Energy and Fuels, 21(1), 373–378, doi: 10.1021/ef060331i
  20. Yuda Wardana, N., Caroko, N., Thoharudin, T. (2016). Pirolisis Lambat Campuran Cangkang Sawit dan Plastik Dengan Katalis Zeolit Alam. Teknoin, 22(5), 361–366, doi: 10.20885/teknoin.vol22.iss5.art5
  21. Qian, J., Wang, F., Liu, S., Yun, Z. (2008). In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresource Technology, 99(18), 9009–9012, doi: 10.1016/j.biortech.2008.04.059
  22. Wang, Y., Li, R., Jiang, Z.T., Tan, J., Tang, S.H., Li, T.T., Liang, L.L., He, H.J., Liu, Y.M., Li, J.T., Zhang, X.C. (2018). Green and solvent-free simultaneous ultrasonic-microwave assisted extraction of essential oil from white and black peppers. Industrial Crops and Products, 114, 164–172, doi: 10.1016/j.indcrop.2018.02.002
  23. Patil, P.D., Gude, V.G., Mannarswamy, A., Cooke, P., Munson-McGee, S., Nirmalakhandan, N., Lammers, P., Deng, S. (2011). Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology, 102(2), 1399–1405, doi: 10.1016/j.biortech.2010.09.046
  24. Ning, L., Ding, Y., Chen, W., Gong, L., Lin, R., Yuan, L., Xin, Q. (2008). Glycerol Dehydration to Acrolein over Activated Carbon-Supported Silicotungstic Acids. Chinese Journal of Catalysis, 29(3), 212–214, doi: 10.1016/S1872-2067(08)60026-1
  25. Valliyappan, T. (2004). Hydrogen or Syn Gas Production from Glycerol Using Pyrolysis and Steam Gasification Processes. University of Saskatchewan Saskatoon
  26. Mittelbach, M.; Remschmidt, C. (2006). Biodiesel – A comprehensive handbook, Biotechnology Journal, 1, 330. doi: 10.1002/biot.200690003
  27. Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies. Tables and Charts, Journal of Raman Spectroscopy (Third Edition). John Wiley & Sons, Ltd., Chichester
  28. Harman-Ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S. (2013). Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmussp. Renewable Energy, 60, 625–632, doi: 10.1016/j.renene.2013.06.016
  29. Smith, W.T., Harris, T.B., Patterson, J.M. (1974). Pyrolysis of Soybean Protein and an Amino Acid Mixture Having the Same Amino Acid Composition. Journal of Agricultural and Food Chemistry, 22(3), 480–483, doi: 10.1021/jf60193a004
  30. Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., Wang, C. (2019). Pyrolysis of microalgae: A critical review. Fuel Processing Technology, 186, 53–72, doi: 10.1016/j.fuproc.2018.12.012

Last update:

No citation recorded.

Last update:

No citation recorded.