Investigation of Chlorophyl-a Derived Compounds as Photosensitizer for Photodynamic Inactivation

*Listiana Oktavia scopus  -  Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Indonesia
Irma Mulyani scopus  -  Inorganic and Physical Chemistry Research Division, Institut Teknologi Bandung, Indonesia
Veinardi Suendo scopus  -  Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Indonesia
Received: 8 Feb 2021; Revised: 16 Mar 2021; Accepted: 17 Mar 2021; Published: 31 Mar 2021; Available online: 18 Mar 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Chlorophyll has unique physicochemical properties which makes them good as photosensitizer of Photodynamic Inactivation (PDI). The physicochemical properties of chlorophyll as photosensitizer can be optimized through several routes.  One of the possible route is by replacing the metal ion center of chlorophyll with other ions. In this research, the effect of coordinated metal ion in the natural chlorophyll-a was studied for bacterial growth (S. aureus) inhibition. The replacement of metal in the center of chlorophyll hopefully can improve the intensity of Intersystem Crossing Mechanism (ISC) lead to the formation of singlet oxygen species. The chlorophyll a and b were isolated from spinach via precipitation technique using 1,4 dioxane and water. The chlorophyll a and b were separated using sucrose column chromatography. The thin layer chromatography result showed that chlorophyll a (Rf: 0.57) had been well separated with chlorophyll b (Rf: 0.408). The absorption spectra of chlorophyll a and b showed that the Soret band was observed at 411 and 425 nm, while the Q band appeared at 663 and 659 nm. Replacement of metal ion center shifted the Soret band of chlorophyll- a derivatives to lower energy region, while Q-band was slightly shifted to the higher energy region. The absorption and the fluorescence intensity were  also observed decreasing after ion replacement. The Inhibition activity investigation over S. aureus showed the highest inhibition activity was exhibited by Zn-pheophytin-a (66.8%) followed by chlorophyll a (30.1 %) and Cu-pheophytin-a (0%). The inhibition activity is correlated with decreasing fluorescence intensity. The formation of singlet oxygen by ISC mechanism is hypothesized to deactivate the excitation state of Cu-pheophytin-a. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Chlorophyll a; Pheophytin; Photosensitizer; Photodynamic inactivation; Sucrose
Funding: Institut Teknologi Bandung under contract Riset dan Inovasi ITB 2020

Article Metrics:

  1. Almeida Da Silva, P.E., Palomino, J.C. (2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. Journal of Antimicrobial Chemotherapy, 66(7), 1417–1430, doi: 10.1093/jac/dkr173
  2. Amos-Tautua, B.M., Songca, S.P., Oluwafemi, O.S. (2019). Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules. 24(13), 2456, doi: 10.3390/molecules24132456
  3. Hamblin, A.M.R., Jori, G. (2011). Photodynamic Inactivation of Microbial Pathogens Medical and Environmental Applications: Light Strikes Back Microorganisms in the New Millennium. Photochemistry and Photobiology, 87(6), 1479–1479, doi: 10.1111/j.1751-1097.2011.01010.x
  4. Wise, R. (2011). The urgent need for new antibacterial agents. Journal of Antimicrobial Chemotherapy, 66(9), 1939–1940, doi: 10.1093/jac/dkr261
  5. Hamblin, M.R., Jori, G., Hader, D.P. (2011). Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications. Comprehensive Series in Photochemistry and Photobiology, 11, 434, doi: 10.1111/j.1751-1097.2011.01010.x
  6. Liu, Y., Qin, R., Zaat, S.A.J., Breukink, E., Heger, M. (2015). Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. Journal of Clinical and Translational Research, 1(3), 140–167, doi: 10.18053/jctres.201503.002
  7. Tim, M. (2015). Biology Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. Journal of Photochemistry & Photobiology B, 150, 2–10, doi: 10.1016/j.jphotobiol.2015.05.010
  8. Maisch, T., Eichner, A., Späth, A., Gollmer, A., König, B., Regensburger, J., Bäumler, W. (2014). Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS ONE, 9(12), 1-8, doi: 10.1371/journal.pone.0111792
  9. Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., Bahador, A. (2018). Photosensitizers in antibacterial photodynamic therapy : an overview. Laser therapy, 27(4), 293–302, doi: 10.5978/islsm.27_18-RA-01
  10. Nitzan, Y., Gutterman, M., Malik, Z., Ehrenberg, B. (1992). Inactivation of Gram‐Negative Bacteria By Photosensitized Porphyrins. Photochemistry and Photobiology, 55(1), 89–96, doi: 10.1111/j.1751-1097.1992.tb04213.x
  11. Castano, A.P., Demidova, T.N., Hamblin, M. (2004). Mechanisms in photodynamic therapy: part one. Photodiagnosis Photodyn Ther, 1(4), 279–293, doi: 10.1016/S1572-1000(05)00007-4
  12. Mojzisova, H., Bonneau, S., Brault, D. (2007). Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells. European Biophysics Journal, 36(8), 943–953, doi: 10.1007/s00249-007-0204-9
  13. Stepp, H., Waldelich, R. (2007). Fluoreszenzdiagnostik und Photodynamische Therapie in der Urologie. Aktuelle Urologie, 38(6), 455–464, doi: 10.1055/s-2007-980149
  14. MacRobert, A.J., Bown, S.G., Phillips, D. (1989). What are the ideal photoproperties for a sensitizer?. Ciba Foundation Symposium, 146, 4–16, doi: 10.1002/9780470513842.ch2
  15. Macdonald, I.A.N.J., Dougherty, T.J. (2008). MacDonald2007. Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 5, 1–18, doi: 10.1002/jpp.328
  16. Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., Roncucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 38(5), 468–481, doi: 10.1002/lsm.20361
  17. Kashef, N., Hamblin, M.R. (2017). Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?. Drug Resistance Updates, 31, 31–42, doi: 10.1016/j.drup.2017.07.003
  18. Benov, L., Craik, J., Batinic-Haberle, I. (2012). The Potential of Zn(II) N-Alkylpyridylporphyrins for Anticancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 11(2), 233–241, doi: 10.2174/187152011795255975
  19. Al-mutairi, R., Tovmasyan, A., Batinic-haberle, I., Benov, L. (2018). Sublethal Photodynamic Treatment Does Not Lead to Development of Resistance. Frontier in Microbiology, 9, 1699, doi: 10.3389/fmicb.2018.01699
  20. Lammer, A.D., Cook, M.E., Sessler, J.L., Phthalocyanines, J.P. (2015). Synthesis and anti-cancer activities of a water soluble gold (III) porphyrin. Journal of Porphyrins and Phthalocyanines, 19, 1–6, doi: 10.1142/S1088424615500236
  21. Abrahamse, H., Hamblin, M.R. (2016). New photosensitizers for photodynamic therapy. Biochemical Journal, 473, 347–364, doi: 10.1042/BJ20150942
  22. Kou, J., Dou, D., Yang, L. (2017). Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 8(46), 81591–81603, doi: 10.18632/oncotarget.20189
  23. Nyman, E.S., Hynninen, P.H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1–2), 1–28, doi: 10.1016/j.jphotobiol.2003.10.002
  24. Berezin, B.D., Berezin, M.B., Moryganov, A.P., Rumyantseva, S.V., Dymnikova, N.S. (2003). Chlorophyll and its derivatives, chlorins and porphyrins, as a promising class of environmentally friendly dyes. Russian Journal of Applied Chemistry, 76(12), 1958–1961, doi: 10.1023/B:RJAC.0000022447.81026.1a
  25. Gerola, A.P., Santana, A., Franc, P.B., Tsubone, T.M., Oliveira, H.P M.De, Caetano, W., Kimura, E., Hioka, N., Camilo, U., Branco, C., Jose, S. (2011). Effects of Metal and the Phytyl Chain on Chlorophyll Derivatives : Physicochemical Evaluation for Photodynamic Inactivation of Microorganisms. Photochemistry and Photobiology, 87, 884–894, doi: 10.1111/j.1751-1097.2011.00935.x
  26. Allison, R.R., Downie, G.H., Cuenca, R., Hu, X., Childs, C.J.H., Sibata, C.H. (2004). Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 1, 7–9, doi: 10.1016/S1572-1000(04)00007-9
  27. Alves, E., Faustino, M.A.F., Neves, M.G.P.M.S., Cunha, A., Tome, J., Almeida, A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 6(2), 141–164, doi: 10.4155/fmc.13.211
  28. Josefsen, L.B., Boyle, R.W. (2008). Photodynamic therapy and the development of metal-based photosensitisers. Metal-Based Drugs, 2008, 276109, doi: 10.1155/2008/276109
  29. Felsher, D.W. (2003). Cancer revoked: Oncogenes as therapeutic targets. Nature Reviews Cancer, 3(5), 375–380, doi: 10.1038/nrc1070
  30. Nurhayati, N., Suendo, V. (2011). Isolation of Chlorophyll a from Spinach Leaves and Modification of Center Ion with Zn2+: Study on its Optical Stability. Jurnal Matematika dan Sains, 16(2), 65–70
  31. Pareek, S., Sagar, N.A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G.A., Yahia, E.M. (2017). Chlorophylls: Chemistry and biological functions. In: Yahia, E.M. (Ed.). Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition. John Wiley & Sons Ltd., 269–284, doi: 10.1002/9781119158042.ch14
  32. Inoue, H., Imai, M., Naemura, T. (1993). Preparation and determination of zinc (II) chlorophylls by reversed-phase high-performance liquid chromatography. Journal of Chromatography, 645, 259–264, doi: 10.1016/0021-9673(93)83385-6
  33. Ioka, N.O.H., Imura, E.L.Z.A.K. (2008). Photodynamic effect of light emitting diode light on cell growth. Journal of Bioscience, 33, 231–237, doi: 10.1007/s12038-008-0040-9
  34. Croft, H., Chen, J.M. (2017). Leaf pigment content. In Comprehensive Remote Sensing (Vols. 1–9, Issue October). Elsevier Inc., doi: 10.1016/B978-0-12-409548-9.10547-0
  35. Sandiningtyas, R.D., Suendo, V. (2010). Isolation of Chrlorophyll-a from Spinach and Its Modification using Fe2+ in Photostability Study. Third International Conference on Mathematics and Natural Science (ICMNS 2010). 859–873
  36. Rahimi, H.R., Fayyaz, F., Rassa, M., Rabbani, M. (2018). Microwave-assisted synthesis of 5,10,15,20-tetrakis(4-nitrophenyl) porphyrin and zinc derivative and study of their bacterial photoinactivation. Iranian Chemical Communication Payame Noor University, 6(21), 300–311, http://icc.journals.pnu.ac.ir/mobile/article_1935_cb24098fd616dfbce9f734c2f2b19b67.pdf
  37. Zoltan, T., Vargas, F., Rivas, C., López, V., Perez, J., Biasutto, A. (2010). Synthesis, photochemical and photoinduced antibacterial activity studies of meso-tetra(pyren-1-yl)porphyrin and its Ni, Cu and Zn complexes. Scientia Pharmaceutica, 78(4), 767–789, doi: 10.3797/scipharm.1003-13

Last update: 2021-04-20 03:50:00

No citation recorded.

Last update: 2021-04-20 03:50:01

No citation recorded.