Light-Harvesting Metal-Organic Frameworks (MOFs) La-PTC for Photocatalytic Dyes Degradation

Agustino Zulys scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Indonesia
*Adawiah Adawiah  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Indonesia
Jarnuzi Gunlazuardi scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Indonesia
Muhammad Derry Luthfi Yudhi  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Indonesia
Received: 8 Feb 2021; Revised: 20 Mar 2021; Accepted: 21 Mar 2021; Published: 31 Mar 2021; Available online: 22 Mar 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

A novel porous metal organic framework, La-PTC was synthesized by solvothermal method using a perylene-3,4,9,10-tetracarboxylate ligand and lanthanum metal ion. The FTIR analysis showed that La-PTC has a different structure with PTCDA and Na4PTC. The La-PTC MOF has high crystallinity, bandgap energy of 2.21 eV with a maximum absorption area at 561 nm. A rod shape structure of La-PTC has been obtained with the surface area of 22.2364 m2.g1 and classified into mesoporous material. The La-PTC was relative stable up to 376.93 °C. The La-PTC can degrade 64.76% of MO within ca. 240 min under visible light irradiation with the amount of 30 mg La-PTC. The addition of H2O2 improved the photocatalytic activity of La-PTC with degradation efficiency of 67.02%, 70.00%, and 99.60% for MB, RhB, and MO, respectively. This study presents the fabrication of the light-harvesting metal organic framework, La-PTC and its potential in dyes degradation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Metal-organic frameworks; lanthanum; perylene; dyes degradation; photocatalytic
Funding: Ministry of Research and Technology/National Research and Innovation Agency of Indonesia

Article Metrics:

  1. Ramasundaram, S., Seid, M.G., Choe, J.W., Kim, E.-J., Chung, Y.C., Cho, K., Lee, S., Hong, S.W. (2016). Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. Chemical Engineering Journal, 306, 344–351, doi: 10.1016/j.cej.2016.07.077
  2. Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1(95), 69–96, doi: 10.1021/cr00033a004
  3. Zou, X., Zhang, Y. (2015). Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44(15), 5148–5180, doi: 10.1039/c4cs00448e
  4. Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., Zhoum, H.-C. (2014). Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews, 43(16), 5561–5593, doi: 10.1039/c4cs00003j
  5. Rojas, S., Horcajada, P. (2020). Metal − Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chemical Reviews, 120, 16, 8378–8415, doi: 10.1021/acs.chemrev.9b00797
  6. Wang, C.C., Li, J.R., Lv, X.L., Zhang, Y.Q., Guo, G. (2014). Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 7(9), 2831–2867, doi: 10.1039/c4ee01299b
  7. Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., Zhou, H.-C. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303, doi: 10.1002/adma.201704303
  8. Xia, Q., Yu, X., Zhao, H., Wang, S., Wang, H., Guo, Z., Hongzhu Xing, H. (2017). Syntheses of Novel Lanthanide Metal-Organic Frameworks for Highly Efficient Visible-Light-Driven Dye Degradation. Crystal Growth & Design, 17(8), 4189–4195, doi: 10.1021/acs.cgd.7b00504
  9. Buhori, A., Zulys, A., Gunlazuardi, J. (2020). Synthesis of Lanthanum metal-organic frameworks (La-MOFs) as degradation photocatalyst of Rhodamine-B. AIP Conference Proceedings, 2242, 040033, doi: 10.1063/5.0013010
  10. Pan, W., Gong, C., Zeng, X., Hu, C., Zhang, Y., Zhu, D.-R., Xu, H., Guo, H., Zhang, J., Xie, J. (2019). Assembly of porous lanthanide metal–organic frameworks constructed by chalcone dicarboxylic acid and exploration of their properties. Polyhedron, 169, 24–31, doi: 10.1016/j.poly.2019.04.062
  11. Batubara, N.H., Zulys, A. (2019). Synthesis, Structural, Spectroscopic, and Morphology of Metal-Organic Frameworks Based on la (III) and Ligand 2,6-Napthalenedicarboxylic acid (La-MOFs) for Hydrogen Production. IOP Conference Series: Materials Science and Engineering, 546(4), 042005, doi: 10.1088/1757-899X/546/4/042005
  12. Ambroz, F., Macdonald, T.J., Martis, V., Parkin, I.P. (2018). Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2(11), 1800173, doi: 10.1002/smtd.201800173
  13. Christina, L.C., Gunlazuardi, J., Zulys, A. (2020). Synthesis and characterization of lanthanide metal-organic framework with perylene 3,4,9,10-tetracarboxylate ligand. IOP Conference Series: Materials Science and Engineering, 902(1), 012046, doi: 10.1088/1757-899X/902/1/012046
  14. Zulys, A., Asrianti, D., Gunlazuardi, J. (2020). Synthesis and characterization of metal organic frameworks based on nickel and perylene dyes as water splitting photocatalyst. AIP Conference Proceedings, 2243, 020035, doi: 10.1063/5.0005001
  15. Chang, S.-S., Clair, B., Ruelle, J., Beauchêne, J., Di Renzo, F., Quignard, F., Zhao, G.-J., Yamamoto, H., Gril, J. (2009). Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany, 60(11), 3023–3030, doi: 10.1093/jxb/erp133
  16. Zulys, A., A’Yun, Q., Gunlazuard, J. (2020). Synthesis of metal organic frameworks based on lanthanum metal and perylene ligand as photocatalyst for hydrogen gas production. AIP Conference Proceedings, 2243, 020034, doi: 10.1063/5.0005000
  17. Kudo, A., Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253–278, doi: 10.1039/b800489g
  18. Pingmuang, K., Chen, J., Kangwansupamonkon, W., Wallace, G.G., Phanichphant, S., Nattestad, A. (2017). Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Scientific Reports, 7(1), 8929, doi: 10.1038/s41598-017-09514-5
  19. Li, N., Xu, J., Feng, R., Hu, T.L., Bu, X.H. (2016). Governing metal-organic frameworks towards high stability. Chemical Communications, 52(55), 8501–8513, doi: 10.1039/c6cc02931k
  20. Chong, M.N., Jin, B., Chow, C.W.K., Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027, doi: 10.1016/j.watres.2010.02.039
  21. Al-mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment : A review. Journal of Environmental Chemical Engineering, 7(5), 103248, doi: 10.1016/j.jece.2019.103248
  22. Isac, L., Cazan, C., Enesca, A., Andronic, L. (2019). Copper Sulfide Based Heterojunctions as Photocatalysts for Dyes Photodegradation. Frontiers in Chemistry, 7, 694, doi: 10.3389/fchem.2019.00694
  23. Natarajan, S., Bajaj, H.C., Tayade, R.J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 65, 201–222, doi: 10.1016/j.jes.2017.03.011
  24. Abramovic, B., Despotovic, V., Šojic, D., Fincur, N. (2015). Mechanism of clomazone photocatalytic degradation: Hydroxyl radical, electron and hole scavengers. Reaction Kinetics, Mechanisms and Catalysis, 115(1), 67–79, doi: 10.1007/s11144-014-0814-z
  25. Pu, Y.C., Chou, H.Y., Kuo, W.S., Wei, K.H., Hsu, Y.J. (2017). Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 204, 21–32, doi: 10.1016/j.apcatb.2016.11.012
  26. Chiu, Y.H., Chang, T.F.M., Chen, C.Y., Sone, M., Hsu, Y.J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9(5), 430, doi: 10.3390/catal9050430

Last update: 2021-04-19 23:43:24

No citation recorded.

Last update: 2021-04-19 23:43:24

No citation recorded.