skip to main content

Study of Hydrolysis Process from Pineapple Leaf Fibers using Sulfuric Acid, Nitric Acid, and Bentonite Catalysts

Diploma Program of Chemical Analysis, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14.5 Yogyakarta 55584, Indonesia

Received: 4 Feb 2021; Revised: 22 May 2021; Accepted: 22 May 2021; Published: 30 Sep 2021; Available online: 28 May 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The hydrolysis process of pineapple leaf fibers has been carried out using sulfuric acid, nitric acid, bentonite catalyst, and activated bentonite catalyst. The sugar content of the hydrolysis product was identified using the phenol-sulfuric acid method by UV-Visible spectrophotometry. The disposal of pineapple leaf is a big problem even though it has high cellulose content (70–80%) and very promising to produce sugar by hydrolysis process. The purpose of this experiment was to determine the effectiveness of homogeneous and heterogeneous catalysts related to sugar levels in pineapple leaf fiber. The variables in this study were the sampling time during the hydrolysis process at a temperature of 100 °C and the addition of homogeneous and heterogeneous catalysts. The homogeneous catalysts were sulfuric acid and the nitric acid meanwhile heterogeneous catalyst was thermally activated bentonite and acid-activated bentonite. The results obtained highest sugar content reached at 150 minutes using chemical activated bentonite catalysts at 6.459 g/L and the addition of catalysts affected sugar yields, speed up the reaction, bentonite as a good catalyst, and gave good prospect for ethanol production in further process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: pineapple leaf fiber; hydrolysis; bentonite catalysts; kinetics
Funding: Universitas Islam Indonesia

Article Metrics:

Article Info
Section: The 3rd International Conference on Chemistry, Chemical Process and Engineering 2020) (IC3PE 2020)
Language : EN
Statistics:
Share:
  1. Onggo, H., Astuti, J.T. (2005) Pengaruh Sodium Hidroksida dan Hidrogen Peroksida terhadap Rendemen dan Warna Pulp dari Serat Daun Nenas, J. Ilmu Teknol. Kayu Trop., 3(1), 37–43. DOI: 10.51850/jitkt.v3i1.304.g277
  2. Jayanudin, J. (2009). Pemutihan Daun Nanas Menggunakan Hidrogen Peroksida. J. Rekayasa Proses, 3(1), 10–14. DOI: 10.22146/jrekpros.560
  3. Hidayat, P. (2008). Teknologi Pemanfaatan Serat Daun Nanas Sebagai Alternatif Bahan Baku Tekstil. Teknoin, 13, 31–35. DOI: 10.20885/.v13i2.795
  4. Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol., 83(1), 1–11. DOI: 10.1016/S0960-8524(01)00212-7
  5. Da Silva, C.N., Bronzato, G.R.F., Cesarino, I., Leão, A.L. (2020). Second-generation ethanol from pineapple leaf fibers. J. Nat. Fibers, 17(1), 113–121. DOI: 10.1080/15440478.2018.1469453
  6. Wilda, N., Pandebesie, E.S. (2015). Hidrolisis Eceng Gondok dan Sekam Padi untuk Menghasilkan Gula Reduksi sebagai Tahap Awal Produksi Bioetanol. J. Tek. ITS, 4(2), 2–6. DOI: 10.12962/j23373539.v4i2.11308
  7. Susanti, A.D., Prakoso, P.T., Prabawa, H. (2011). Pembuatan bioetanol dari kulit nanas melalui hidrolisis dengan asam. Ekuilibrium, 10(2), 81–86. DOI: 10.20961/ekuilibrium.v12i1.24896
  8. Anggoro, D.D., Purwanto, P., Rispiandi, R. (2014). Hidrolisis Selulosa Menjadi Glukosa Dengan Katalis Heterogen Arang Aktif Tersulfonasi. Reaktor, 15(2), 126. DOI: 10.14710/reaktor.15.2.126-131
  9. Osvaldo Z.S., Panca, P.S., Faizal, M. (2012). Pengaruh Konsentrasi Asam dan Waktu Pada Proses Hidrolisis dan Fermentasi Pembuatan Bioetanol dari Alang-Alang. J. Tek. Kim., 18(2), 52–62
  10. Iranmahboob, J., Nadim, F., Monemi, S. (2002). Optimizing acid-hydrolysis: A critical step for the production of ethanol from mixed wood chips. Biomass and Bioenergy, 22(5), 401–404. DOI: 10.1016/S0961-9534(02)00016-8
  11. Mussatto, S.I., Roberto, I.C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol., 93(1), 1–10. DOI: 10.1016/j.biortech.2003.10.005
  12. Rover, M.R., Johnston, P.A., Lamsal, B.P., Brown, R.C. (2013). Total water-soluble sugars quantification in bio-oil using the phenol-sulfuric acid assay. J. Anal. Appl. Pyrolysis, 104, 194–201. DOI: 10.1016/j.jaap.2013.08.004
  13. Viel, M., Collet, F., Lanos, C. (2018). Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material. Ind. Crops Prod., 120, 214–237. DOI: 10.1016/j.indcrop.2018.04.025
  14. Choojit, S., Ruengpeerakul, T., Sangwichien, C. (2018). Optimization of acid hydrolysis of pineapple leaf residue and bioconversion to ethanol by saccharomyces cerevisiae. Cellul. Chem. Technol., 52(3–4), 247–257
  15. Huntley, C.J., Crews, K.D., Abdalla, M.A., Russell, A.E., Curry, M.L. (2015). Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. Int. J. Chem. Eng., 1, 1–9. DOI: 10.1155/2015/658163
  16. Dewi, A.M.P., Kusumaningrum, M.Y., Pranoto, Y., Darmadji, P. (2017). Ekstraksi dan karakterisasi selulosa dari limbah ampas sagu, Prosiding Seminar Nasional Sains dan Teknologi ke-8, pp. 6-9. Fakultas Teknik Universitas Wahid Hasyim Semarang, Seminar Nasional Sains dan Teknologi
  17. Taherzadeh, M.J., Karimi, K. (2007). Acid-Based Hydrolysis Processes for Ethanol From Lignocellulosic Materials: a Review. BioResources, 2(3), 472–499
  18. Haryani, N., Novia., Syarief, V.L., Ananda, S.R. (2015). Pengaruh Konsentrasi Asam dan Waktu Hidrolisis Pada Pembentukan Bioetanol Dari Daun Nanas. J. Tek. Kim., 21(4), 39–46
  19. Hick, S.M., Griebel, C., Restrepo, D.T., Truitt, J.H., Buker, E.J., Bylda, C., Blair, R.G. (2010). Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem., 12, 468–474. DOI: 10.1039/b923079c
  20. Xiang, Q., Lee, Y.Y., Pettersson, P.O., Torget, R.W. (2003). Heterogeneous Aspects of Acid Hydrolysis of α-Cellulose. Appl. Biochem. Biotechnol., 105, 505–514. DOI: 10.1385/ABAB:107:1-3:505
  21. Salmi, T., Murzin, D. Y., Maki-Arvela, P., Kusema, B., Holmbom, B., Wilfor, S. (2014). Kinetic Modeling of Hemicellulose Hydrolysis in the Presence of Homogeneous and Heterogeneous Catalysts. AIChE J., 60(3), 1066–1077. DOI: 10.1002/aic.14311
  22. Liu, D., Yuan, P., Liu, H., Cai, J., Qin, Z., Tan, D., Zhou, Q., He, H., Zhu, J. (2011). Influence of heating on the solid acidity of montmorillonite: A combined study by DRIFT and Hammett indicators. Appl. Clay Sci., 52(4), 358–363. DOI: 10.1016/j.clay.2011.03.016
  23. Bieseki, L., Treichel, H., Araujo, A.S., Pergher, S.B.C., (2013), Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays. Appl. Clay Sci., 85(1), 46–52. DOI: 10.1016/j.clay.2013.08.044
  24. Zhang, H., Li, S., Xu, L., Sun, J., Li, J. (2016). Kinetic Study of the Decomposition of Cellulose to 5-Hydroxymethylfurfural in Ionic Liquid. BioResources, 11(2), 4268–4180. DOI: 10.15376/biores.11.2.4268-4280
  25. Tursiloadi, S., Sanjaya, G.K., Indrasti, N.S. (2009). Mathematic Model Of Hydrolysis Process From Banana Trees Cellulose To Glucose By Using Liquid Acid Catalyst. J. Tek. Ind. Pert., 19(3), 164–169

Last update:

No citation recorded.

Last update:

No citation recorded.