skip to main content

Comparative Study on Lipase Immobilized onto Organo-Cation Exchanged Kaolin and Metakaolin: Surface Properties and Catalytic Activity

Faculty of Science & Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

Received: 30 Jan 2021; Revised: 30 Mar 2021; Accepted: 1 Apr 2021; Available online: 6 Apr 2021; Published: 30 Jun 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Clay mineral has received much attention to be used as biocatalysts as it is cheaper, easily available and environmentally friendly. However, the use of unmodified clay, in particular kaolin for enzyme immobilization showed unsuitability of this support due to its negative charge. In this study, the hydrophobic properties of kaolin and metakaolin (kaolin heated to 650 °C) were adjusted by the intercalation with benzyltriethylammonium chloride (BTEA-Cl), at concentrations 2.0 times the cation exchange capacities (CEC) of the clays. The supports were then used for immobilization of lipase from Candida rugosa (CRL). From the study, the highest percentage of lipase immobilization was achieved (70.14%), when organo-modified metakaolin (2.0 MK) was used. The supports as well as the immobilized biocatalysts were then characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption techniques. Comparisons of the efficiencies of immobilized with free CRL in the synthesis of nonyl hexanoate showed that immobilized CRL achieved enzymatic activities of between 5.24×103 to 3.63×103 mmol/min/mg, while free CRL achieved enzymatic activity of 3.27×103 mmol/min/mg after 5 h of reaction at 30 ℃. The immobilized CRLs also maintained 70.81% – 80.59% thermostabilities at 70 ℃ as compared to the free CRL (28.13%). CRL immobilized on 2.0 NK and 2.0 MK also maintained 38.54% and 62.56%, respectively, of the initial activities after 10 continuous cycles, showing the excellent stability and reusability of the immobilized lipases, suitable as substitute for expensive, hazardous catalysts used in industries. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Kaolin; Metakaolin; Organo-modification; Candida rugosa lipase; Immobilization
Funding: Faculty of Sciences and Technology, Universiti Sains Islam Malaysia (USIM)

Article Metrics:

  1. Yeşiloğlu, Y. (2005). Utilization of bentonite as a support material for immobilization of Candida rugosa lipase. Process Biochemistry, 40, 2155–2159.‏ DOI: 10.1016/j.procbio.2004.08.008
  2. Othman, S.S., Basri, M., Hussein, M.Z., Rahman, M.B.A., Rahman, R.N.Z.A., Salleh, A.B., Jasmani, H. (2008). Production of highly enantioselective(−)-menthyl butyrate using Candida rugosa lipase immobilized on epoxy-activated supports. Food Chemistry, 106, 437–443.‏ DOI: 10.1016/j.foodchem.2007.04.026
  3. Sri Kaja, B., Lumor, S., Besong, S., Taylor, B., Ozbay, G. (2018). Investigating enzyme activity of immobilized Candida rugosa lipase. Journal of Food Quality, 2018, 1618085.‏ DOI: 10.1155/2018/1618085
  4. Srilatha, K., Lingaiah, N., Devi, B.P., Prasad, R.B.N., Venkateswar, S., Prasad, P.S. (2009). Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts. Applied Catalysis A: General, 365, 28–33.‏ DOI: 10.1016/j.apcata.2009.05.025
  5. Marzuki, N.H.C., Huyop, F., Aboul-Enein, H.Y., Mahat, N.A., Wahab, R.A. (2015). Modelling and optimization of Candida rugosa nanobioconjugates catalysed synthesis of methyl oleate by response surface methodology. Biotechnology and Biotechnological Equipment, 29, 1113–1127. DOI: 10.1080/13102818.2015.1078744
  6. Musa, N., Latip, W., Abd Rahman, R.N.Z.A., Salleh, A.B., Mohamad Ali, M.S. (2018). Immobilization of an Antarctic Pseudomonas AMS8 lipase for low temperature ethyl hexanoate synthesis. Catalysts, 8, 234.‏ DOI: 10.3390/catal8060234
  7. Dayi, B., Kyzy, A.D., Abduloglu, Y., Cikrikci, K., Akdogan, H.A. (2018). Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta. Dyes and Pigments, 151, 15–21.‏ DOI: 10.1016/j.dyepig.2017.12.038
  8. Sheldon, R.A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis and Catalysis, 349, 1289–1307.‏ DOI: 10.1002/adsc.200700082
  9. Homaei, A.A., Sariri, R., Vianello, F., Stevanato, R. (2013). Enzyme immobilization: An update. Journal of Chemical Biology, 6, 185–205.‏ DOI: 10.1007/s12154-013-0102-9
  10. Eş, I., Vieira, J.D.G., Amaral, A.C. (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied Microbiology and Biotechnology, 99, 2065–2082.‏ DOI: 10.1007/s00253-015-6390-y
  11. Torres‐Salas, P., del Monte‐Martinez, A., Cutiño‐Avila, B., Rodriguez‐Colinas, B., Alcalde, M., Ballesteros, A.O., Plou, F.J. (2011). Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports.‏ Advanced Materials, 23, 5275–5282. DOI: 10.1002/adma.201101821
  12. Abdul Rahman, M.B.A., Yunus, N.M.M., Hussein, M.Z., Rahman, R.N.Z.A., Salleh, A.B., Basri, M. (2005). Application of advanced materials as support for immobilisation of lipase from Candida rugosa. Biocatalysis and Biotransformation, 23, 233–239.‏ DOI: 10.1080/10242420500218703
  13. Šekuljica, N.Ž., Prlainović, N.Ž., Jovanović, J.R., Stefanović, A.B., Grbavčić, S.Ž., Mijin, D.Ž., Knežević-Jugović, Z.D. (2016). Immobilization of horseradish peroxidase onto kaolin by glutaraldehyde method and its application in decolorization of anthraquinone dye. Hemijska Industrija, 70, 217–224.‏ DOI: 10.2298/HEMIND150220028S
  14. Mulinari, J., Oliveira, J.V., Hotza, D. (2020). Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnology Advances, 42, 107581.‏ DOI: 10.1016/j.biotechadv.2020.107581
  15. Winayanuwattikun, P., Kaewpiboon, C., Piriyakananon, K., Chulalaksananukul, W., Yongvanich, T., Svasti, J. (2011). Immobilized lipase from potential lipolytic microbes for catalyzing biodiesel production using palm oil as feedstock. African Journal of Biotechnology, 10, 1666–1673.‏ DOI: 10.5897/AJB10.1802
  16. Liu, Y., Zhou, H., Wang, L., Wang, S. (2016). Stability and catalytic properties of lipase immobilized on chitosan encapsulated magnetic nanoparticles cross‐linked with genipin and glutaraldehyde. Journal of Chemical Technology and Biotechnology, 91, 1359–1367.‏ DOI: 10.1002/jctb.4732
  17. Benamia, F., Benouis, S., Belafriekh, A., Semache, N., Rebbani, N., Djeghaba, Z. (2017). Efficient Candida rugosa lipase immobilization on Maghnite clay and application for the production of (1R)-(−)-Menthyl acetate. Chemical Papers, 71, 785–793. DOI: 10.1007/s11696-016-0080-9
  18. Jafarian, F., Bordbar, A.K., Zare, A., Khosropour, A. (2018). The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets. International Journal of Biological Macromolecules, 111, 1166–1174.‏ DOI: 10.1016/j.ijbiomac.2018.01.133
  19. Tanasković, S.J., Jokić, B., Grbavčić, S., Drvenica, I., Prlainović, N., Luković, N., Knežević-Jugović, Z. (2017). Immobilization of Candida antarctica lipase B on kaolin and its application in synthesis of lipophilic antioxidants. Applied Clay Science, 135, 103–111.‏ DOI: 10.1016/j.clay.2016.09.011
  20. de Souza Lima, J., Costa, F.N., Bastistella, M.A., de Araújo, P.H.H., de Oliveira, D. (2019). Functionalized kaolin as support for endoglucanase immobilization. Bioprocess and Biosystems Engineering, 42, 1165–1173.‏ DOI: 10.1007/s00449-019-02113-w
  21. Scherer, R., Oliveira, J.V., Pergher, S., Oliveira, D.D. (2011). Screening of supports for immobilization of commercial porcine pancreatic lipase. Materials Research, 14, 483–492.‏ DOI: 10.1590/S1516-14392011005000079
  22. Shindo, H., Watanabe, D., Onaga, T., Urakawa, M., Nakahara, O., Huang, Q. (2002). Adsorption, activity, and kinetics of acid phosphatase as influenced by selected oxides and clay minerals. Soil Science and Plant Nutrition, 48, 763–767.‏ DOI: 10.1080/00380768.2002.10409268
  23. Huang, Q., Liang, W., Cai, P. (2005). Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloids and Surfaces B: Biointerfaces, 45, 209–214.‏ DOI: 10.1016/j.colsurfb.2005.08.011
  24. Salehi, M., Salem, A. (2008). Effect of moisture content on extrusion process of kaolinitic–illitic clay in manufacturing of ceramic Raschig ring. Journal of Materials Processing Technology, 200, 232–237.‏ DOI: 10.1016/j.jmatprotec.2007.09.013
  25. Ajayi, O.A., Nok, A.J., Adefila, S.S. (2012). Immobilization of cassava linamarase on Kankara kaolinite clay. Journal of Natural Sciences Research, 2, 55–62
  26. Dong, H., Li, Y., Sheng, G., Hu, L. (2013). The study on effective immobilization of lipase on functionalized bentonites and their properties. Journal of Molecular Catalysis B: Enzymatic, 95, 9–15.‏ DOI: 10.1016/j.molcatb.2013.05.018
  27. Frías, M., García, R., Vigil, R., Ferreiro, S. (2008). Calcination of art paper sludge waste for the use as a supplementary cementing material. Applied Clay Science, 42, 189–193.‏ DOI: 10.1016/j.clay.2008.01.013
  28. Arctander, S. (2019) Perfume & Flavor Chemicals (Aroma Chemicals). Vol. II (Vol. 2). Lulu.com
  29. Tosun, A., Kürkçüoglu, M., Başer, K.H.C. (2006). Essential Oils of Tordylium pestalozzae Boiss, Tordylium pustulosum Boiss. and Tordylium lanatum (Boiss.) Boiss. (Umbelliferae) Growing Wild in Turkey. Journal of Essential Oil Research, 18(6), 640–642.‏ DOI: 10.1080/10412905.2006.9699191
  30. Santamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E. (2002). Specific Surface: Determination and Relevance. Canadian Geotechnical Journal, 39, 233–241.‏ DOI: 10.1139/T01-077
  31. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3
  32. Ramli, M.B., Alonge, O.R. (2016). Characterization of metakaolin and study on early age mechanical strength of hybrid cementitious composites. Construction and Building Materials, 121, 599–611.‏ DOI: 10.1016/j.conbuildmat.2016.06.039
  33. Rashad, A.M. (2013). Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. Construction and Building Materials, 41, 303–318.‏ DOI: 10.1016/j.conbuildmat.2012.12.001
  34. Mgbemena, C.O., Ibekwe, N.O., Mohamed, A.A.P., Sukumar, R., Menon, A.R.R. (2013). Thermal behavior and UV properties of organomodified kaolin oleochemically derived from rubber seed oils (Hevea brasiliensis) and tea seed oils (Camellia sinensis). Journal of Surface Engineered Materials and Advanced Technology, 3, 163–168. DOI: 10.4236/jsemat.2013.33021
  35. Adamis, Z., Williams, R.B., Fodor, J. (2005). Bentonite, kaolin, and selected clay minerals. (No. 231). World Health Organization.‏
  36. Konan, K.L., Peyratout, C., Bonnet, J.P., Smith, A., Jacquet, A., Magnoux, P., Ayrault, P. (2007). Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium. Journal of Colloid and Interface Science, 307, 101–108.‏ DOI: 10.1016/j.jcis.2006.10.085
  37. Konan, K.L., Peyratout, C., Smith, A., Bonnet, J.P., Rossignol, S., Oyetola, S. (2009). Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions. Journal of Colloid and Interface Science, 339, 103–109.‏ DOI: 10.1016/j.jcis.2009.07.019
  38. Boukhemkhem, A., Rida, K. (2017). Improvement adsorption capacity of methylene blue onto modified Tamazert kaolin. Adsorption Science and Technology, 35, 753–773.‏ DOI: 10.1177/0263617416684835
  39. Liew, Y.M., Kamarudin, H., Al Bakri, A.M., Luqman, M., Nizar, I.K., Ruzaidi, C.M., Heah, C.Y. (2012). Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 30, 794–802.‏ DOI: 10.1016/j.conbuildmat.2011.12.079
  40. Jahan, S.A., Parveen, S., Ahmed, S., Kabir, H. (2012). Development and characterization of organophilic clay from bentonite. Materials Science: An Indian Journal, 8, 67–72.‏
  41. Ramos, M.D., Gómez, G.I.G., González, N.S. (2014). Immobilization of Candida rugosa lipase on bentonite modified with benzyltriethylammonium chloride. Journal of Molecular Catalysis B: Enzymatic, 99, 79–84.‏ DOI: 10.1016/j.molcatb.2013.10.021
  42. Lambert, J.F., Millman, W.S., Fripiat, J.J. (1989). Revisiting kaolinite dehydroxylation: A silicon-29 and aluminum-27 MAS NMR study. Journal of the American Chemical Society, 111, 3517–3522.‏ DOI: 10.1021/ja00192a005
  43. Duarte-Silva, R., Villa-García, M.A., Rendueles, M., Díaz, M. (2014). Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Applied Clay Science, 90, 73–80.‏ DOI: 10.1016/j.clay.2013.12.027
  44. Zhang, S., Deng, Q., Li, Y., Zheng, M., Wan, C., Zheng, C., Tang, H., Huang, F., Shi Shi, J. (2018). Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization. Royal Society Open Science, 5, 172368.‏ DOI: 10.1098/rsos.172368
  45. Kakali, G., Perraki, T.H., Tsivilis, S., Badogiannis, E. (2001). Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 73–80.‏ DOI: 10.1016/S0169-1317(01)00040-0
  46. Zhang, X., Liu, H., Xing, H., Li, H., Hu, H., Li, A., Yao, H. (2017). Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method. Fuel, 191, 198–203.‏ DOI: 10.1016/j.fuel.2016.11.067
  47. Meziane, O., Bensedira, A., Guessoum, M., Haddaoui, N. (2017). Preparation and characterization of intercalated kaolinite with: Uurea, dimethyl formamide and an alkylammonium salt using guest displacement reaction. Journal of Materials, 8, 3625–3635.‏
  48. Mota, M.F., Patrício, A.C.L., da Silva, M.M., Freire Rodrigues, M.G. (2015). Preparation and characterization of clay chocolate "A" organoclay using stearyldimethyl ammonium chloride as a surfactant. Materials Science Forum, 805, 667–671. DOI: 10.4028/www.scientific.net/MSF.805.667
  49. Monteiro Jr, O.A., Airoldi, C. (1999). Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 26, 119–128.‏ DOI: 10.1016/S0141-8130(99)00068-9
  50. Airoldi, C., Monteiro Jr, O.A. (2000). Chitosan–organosilane hybrids—Syntheses, characterization, copper adsorption, and enzyme immobilization. Journal of Applied Polymer Science, 77, 797–804. DOI: 10.1002/(SICI)1097-4628(20000725)77:4<797::AID-APP12>3.0.CO;2-Z
  51. Gopinath, S., Sugunan, S. (2007). Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Applied Clay Science, 35, 67–75.‏ DOI: 10.1016/j.clay.2006.04.007
  52. Rostami, E., Norouzbeigi, R., Rahbar, A. (2018). Thermal and chemical modification of bentonite for adsorption of an anionic dye. Advances in Environmental Technology, 4, 1–12.‏ DOI: 10.22104/AET.2018.1844.1088
  53. Parolo, M.E., Pettinari, G.R., Musso, T.B., Sánchez-Izquierdo, M.P., Fernández, L.G. (2014). Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance. Applied Surface Science, 320, 356–363.‏ DOI: 10.1016/j.apsusc.2014.09.105
  54. Díaz, M., Villa-García, M.A., Duarte-Silva, R., Rendueles, M. (2017). Preparation of organo-modified kaolinite sorbents: The effect of surface functionalization on protein adsorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 181–190.‏ DOI: 10.1016/j.colsurfa.2017.07.067
  55. Zaidan, U.H., Rahman, M.BA., Basri, M., Othman, S.S., Rahman, R.N.Z.R.A., Salleh, A.B. (2010). Silylation of mica for lipase immobilization as biocatalysts in esterification. Applied Clay Science, 47(3–4), 276–282.‏ DOI: 10.1016/j.clay.2009.11.004
  56. Golbaha, N., Ramli, Z., Endud, S. (2016). Immobilization of lipase onto mesoporous silica KIT-6 and montmorillonite K10 for enzymatic hydrolysis of tributyrin. Malaysian Journal of Fundamental and Applied Sciences, 12, 39–46. DOI: 10.11113/mjfas.v12n1.419
  57. Sanjay, G., Sugunan, S. (2006). Enhanced pH and thermal stabilities of invertase immobilized on montmorillonite K-10. Food Chemistry, 94, 573–579.‏ DOI: 10.1016/j.foodchem.2004.12.043
  58. Puranik, R.V., Kumar, P., Bhat, Y.S., Prakash, B.J. (2010). A perspective of the interlamellar region of organo-clays by adsorption of aromatic hydrocarbons. Journal of Porous Materials, 17, 485–490.‏ DOI: 10.1007/s10934-009-9311-6
  59. Elgubbi, H. M., Othman, S. S., Harun, F. W. (2020). Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization. International Journal of Engineering and Technology, 9(4), 850-856. DOI: 10.14419/ijet.v9i4.31088
  60. Romero, C.M., Spuches, F.C., Morales, A.H., Perotti, N.I., Navarro, M.C., Gómez, M.I. (2018). Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis. Colloids and Surfaces B: Biointerfaces, 172, 699–707.‏ DOI: 10.1016/j.colsurfb.2018.08.071
  61. Öztürk, H., Pollet, E., Phalip, V., Güvenilir, Y., Avérous, L. (2016). Nanoclays for lipase immobilization: Biocatalyst characterization and activity in polyester synthesis. Polymers, 8, 416.‏ DOI: 10.3390/polym8120416
  62. Paul, C., Borza, P., Marcu, A., Rusu, G., Bîrdeanu, M., Zarcula, S.M., Péter, F. (2016). Influence of the physico-chemical characteristics of the hybrid matrix on the catalytic properties of sol-gel entrapped Pseudomonas fluorescens lipase. Nanomaterials and Nanotechnology, 6, 3.‏ DOI: 10.5772/62194
  63. Miranda, M., Urioste, D., Andrade Souza, L.T., Mendes, A.A., de Castro, H.F. (2011). Assessment of the morphological, biochemical, and kinetic properties for Candida rugosa lipase immobilized on hydrous niobium oxide to be used in the biodiesel synthesis. Enzyme Research, 2011, 216435.‏ DOI: 10.4061/2011/216435
  64. Kharrat, N., Ali, Y.B., Marzouk, S., Gargouri, Y.T., Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochemistry, 46, 1083–1089.‏ DOI: 10.1016/j.procbio.2011.01.029
  65. Patel, V., Gajera, H., Gupta, A., Manocha, L., Madamwar, D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochemical Engineering Journal, 95, 62–70.‏ DOI: 10.1016/j.bej.2014.12.007
  66. Edama, N.A., Sulaiman, A., Abd-Rahim, S.N., Hamid, K.H.K., Busu, Z. (2014). Characterization of waste clay from palm oil mill effluent and enzyme immobilization study for cassava saccharification process. BioResources, 9, 7278–7287.‏ DOI: 10.15376/biores.9.4.7278-7287
  67. Handayani, N., Miletic, N., Loos, K., Achmad, S., Wahyuningrum, D. (2011). Properties of immobilized Candida antarctica lipase B on highly macroporous copolymer. Sains Malaysiana, 40, 965–972.‏
  68. Zhang, S., Shi, J., Deng, Q., Zheng, M., Wan, C., Zheng, C., Li, F., Huang, F. (2017). Preparation of carriers based on ZnO nanoparticles decorated on graphene oxide (GO) nanosheets for efficient immobilization of lipase from Candida rugosa. Molecules, 22, 1205.‏ DOI: 10.3390/molecules22071205

Last update:

No citation recorded.

Last update:

No citation recorded.