Preparation, Characterization, and Catalytic Property of a Cu(II) Complex with 2-Carboxybenzaldehyde-p-Toluenesulfonyl Hydrazone Ligand

Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 16-03-2017
Published: 02-04-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

Metal-organic complex hybrid materials constructed from carboxylate ligands and hydrazone ligands have exhibited potential application in many fields. In order to enrich the applications of the metai-organic complex materials, a new hydrazone ligand contains carboxylate group, 2-carboxybenzaldehyde-p-toluenesulfonyl hydrazone (L1), and its Cu(II) complex (C2), have been prepared. The structure of L1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction, and the composition of Cu(II) complex (C2) has also been determined by elemental analysis, IR and UV spectra. The catalytic activity for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene has been investigated. The results show that Cu(II) complex displays a 100 % selectivity to the product of propargylamine during A3 coupling reaction and benzaldehyde conversions were 95.3, 94.2, and 93.4 % at 120 °C for 12 h in the first, second, and third reaction cycles, respectively.  Copyright © 2018 BCREC Group. All rights reserved

Received: 16th March 2017; Revised: 17th July 2017; Accepted: 18th July 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Tai, X.S., Li, P.F., Liu, L.L. (2018). Preparation, Characterization, and Catalytic Property of a Cu(II) Complex with 2-Carboxybenzaldehyde-p-Toluenesulfonyl Hydrazone Ligand. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 7-13 (doi:10.9767/bcrec.13.1.1012.7-13)



Hydrazone ligand; Cu(II) complex material; Catalyst preparation and characterization; Catalytic property

  1. Xi Shi Tai 
    College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
  2. Peng Fei Li 
    College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
  3. Li Li Liu 
    College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
  1. Ajlouni, A.M., Abu-Salem, Q., Taha, Z.A., Hijazi, A.K., Momani, W.A. (2016). Synthesis, Characterization, Biological Activities and Luminescent Properties of Lanthanide Complexes with [2-Thiophenecarboxylic Acid, 2-(2-Pyridinylmethylene)hydrazide] Schiff Bases Ligand. Journal of Rare Earths, 34: 986-993.
  2. Wang, Q., Fan, Y., Song, T.Y., Xu, J.N., Wang, J., Chai, J., Liu, Y.L., Wang, L., Zhang, L.R. (2015). In Situ Synthesis of A Series of Lanthanide Coordination Polymers Based on N-heterocyclic Carboxylate Ligands: Crystal Structure and Luminescence. Inorganica Chimica Acta, 438: 128-134.
  3. Song, J., Wang, J.J., Hu, H.M., Wu, Q.R., Xie, J., Dong, F.X., Yang, M.L., Xue, G.L. (2014). Syntheses, Structures and Properties of Four 3D Microporous Lanthanide Coordination Polymers Based on 3,5-Pyrazoledicarboxylate and Oxalate Ligands. Journal of Solid State Chemistry, 212: 185-190.
  4. Yang, Y.Q., Yang, J., Kan, W.Q., Yang, Y., Guo, J., Ma, J.F. (2013). A Series of 1D, 2D, and 3D Coordination Polymers Based on Flexible 3-Carboxy-1-Carboxymethyl-2-Oxidopyridinium and Different N-Donor Ligands – Syntheses, Structures, and Luminescent Properties. European Journal of Inorganic Chemistry, 2013: 280-292.
  5. Solanki, A., Sadhu, M.H., Patel, S., Devkar, R., Kumar, S.B. (2015). Ternary Complexes of Copper(II) and Cobalt(II) Carboxylate with Pyrazole Based Ligand: Syntheses, Characterization, Structures, and Bio-activities. Polyhedron, 102: 267-275.
  6. Vanicek, S., Kopacka, H., Wurst, K., Vergeiner, S., Oehninger, L., Ott, I., Bildstein, B. (2015). Cobaltocenium Carboxylate Transition Metal Complexes: Synthesis, Structure, Reactivity, and Cytotoxicity. Zeitschrift für Anorganische und Allgemeine Chemie, 641: 1282-1292.
  7. Xu, J., Zhou, T., Xu, Z.Q., Gu, X.N., Wu, W.N., Chen, H., Wang, Y., Jia, L., Zhu, T.F., Chen, R.H. (2017). Synthesis, Crystal Structures and Antitumor Activities of Copper(II) Complexes with A 2-Acetylpyrazine Isonicotinoyl Hydrazone Ligand. Journal of Molecular Structure, 1128: 448-454.
  8. Ferreira, I.P., Piló, Elisa, D.L., Recio-Despaigne, A.A., Da Silva, J.G., Ramos, J.P., Marques, L.B., Prazeres, P.H.D.M., Takahashi, J.A., Souza-Fagundes, E.M., Rocha, W., Beraldo, H. (2016). Bismuth(III) Complexes with 2-Acetylpyridine- and 2-Benzoylpyridine-derived Hydrazones: Antimicrobial and Cytotoxic Activities and Effects on the Clonogenic Survival of Human Solid Tumor Cells. Bioorganic & Medicinal Chemistry, 24: 2988-2998.
  9. Hijazi, A.K., Taha, Z.A., Ajlouni, A.M., Al-Momani, W.M., Idris, I.M., Hamra, E.A. (2017). Synthesis and Biological Activities of Lanthanide (III) Nitrate Complexes with N-(2-hydroxynaphthalen-1-yl) methylene) Nicotinohydrazide Schiff Base. Medicinal Chemistry, 13: 77-84.
  10. Wang, J., Qu, D., Lei, J.X., You, Z.L. (2017). Synthesis, Crystal Structures and Jack Bean Urease Inhibitory Activity of Copper(II) Complexes with 4-Bromo-N′-(2-hydroxy-5-methoxybenzylidene)benzohydrazide. Journal of Coordination Chemistry, 70: 544-555.
  11. Zafarian, H., Sedaghat, T., Motamedi, H., Rudbari, H.A. (2016). A Multiprotic Ditopic Thiocarbohydrazone Ligand in the Formation of Mono- and Di-nuclear Organotin(IV) Complexes: Crystal Structure, Antibacterial Activity and DNA Cleavage. Journal of Organometallic Chemistry, 825-826: 25-32.
  12. Kehinde, O., Joseph, A., Tolutope, S., Olanrewaju, A., Christiana, A., Kayode, A., Salih, M.S., Tadigoppula, N. (2016). Synthesis, Characterization, Theoretical Treatmentand Antitubercular Activity Evaluation of (E)-N’-(2,5-Dimethoxylbenzylidene) nicotinohydrazide and Some of Its Transition Metal Complexes Against Mycobacterium Tuberculosis, H37Rv. Oriental Journal of Chemistry, 32: 413-427.
  13. Kornel, R., Irena, S., Stefan, K., Dariusz, M. (2016). Carboxylate-Hydrazone Mixed-Linker Metal-Organic Frameworks: Synthesis, Structure, and Selective Gas Adsorption. European Journal of Inorganic Chemistry, 2016: 4450-4456.
  14. Wen, H.R., Dong, P.P., Liang, F.Y., Liu, S.J., Xie, X.R., Tang, Y.Z. (2017). A Family of 2D Lanthanide Complexes Based on Flexible Thiodiacetic Acid with Magnetocaloric or Ferromagnetic Properties. Inorganica Chimica Acta, 455: 190-196.
  15. Xu, J.Q., Zheng, Y.Q., Xu, W. (2017). Synthesis, Crystal Structures, and Properties of Copper(II) Dicarboxylate Complexes with [Bis(2-pyridylcarbonyl)amido]. Russian Journal of Coordination Chemistry, 43: 63-72.
  16. Tai, X.S., Meng, Q.G., Liu, L.L. (2016). Synthesis, Crystal Structure and Spectroscopic Analysis of a New Sodium Coordination Polymer. Open Chemistry, 14: 274-278.
  17. Sadhu, M.H., Mathoniere, C., Patil, Y.P., Kumar, S.B. (2017). Binuclear Copper(II) Complexes with N3S-coordinate Tripodal Ligand and Mixed Azide-carboxylate Bridges: Synthesis, Crystal Structures and Magnetic Properties. Polyhedron, 122: 210-218.
  18. Miriam, N.G., Kohsuke, M., Ai, N., Yasutaka, K., Hiromi, Y. (2016). Highly Efficient Ru/carbon Catalysts Prepared by Pyrolysis of Supported Ru Complex Towards the Hydrogen Production from Ammonia Borane. Applied Catalysis A: General, 527: 45-52.
  19. Yang, D., Odoh, S.O., Borycz, J., Wang, T.C., Farha, O.K., Hupp, J.T., Cramer, C.J., Gagliardi, L., Gates, B.C. (2016). Tuning Zr6 Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catalysis, 6: 235-247.
  20. Thangavel, S., Boopathi, S., Mahadevaiah, N., Kolandaivel, P., Pansuriya, P.B., Friedrich, H.B. (2016). Catalytic Oxidation of Primary aromatic alcohols Using Half Sandwich Ir(III), Rh(III) and Ru(II) Complexes: A Practical and Theoretical Study. Journal of Molecular Catalysis A: Chemical, 423: 160-171.
  21. Gao, R., Zhang, M., Liang, T.L., Wang, F.S., Sun, W.H. (2008). Nickel(II) Complexes Chelated by 2-Arylimino-6-benzoxazolylpyridine: Syntheses, Charac-terization, and Ethylene Oligomerization. Organometallics, 27: 5641-5648.
  22. Saka, E.T., Sark, G., Kantekin, H., Koca, A. (2016). Electrochemical, Spectroelectro-chemical and Catalytical Properties of New Cu(II) and Co(II) Phthalocyanines. Synthetic Metals, 214: 82-91.
  23. Tai, X.S., Liu, L.L., Yin, J. (2014). Synthesis, Crystal Structure of Tetra-Nuclear Macrocyclic Cu(II) Complex Material and Its Application as Catalysts for A3 Coupling Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 24(6): 1014-1020.
  24. Tai, X.S., Liu, L.L. (2015). Synthesis, Crystal Structure of a Mg(II) Complex Materials and Its Application as Catalysts for A3 Coupling Reaction. The Open Materials Science Journal, 9: 1-5.
  25. Wang, L.H., Liang, L., Wang, X. (2017). Synthesis, Structural Characterization, and Catalytic Activity of A Cu(II) Coordination Polymer Constructed From 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12: 113-118.
  26. Sheldrick, G.M. (1997). SHELXL-97, Program for Crystal Structure Solution. University of Göttingen: Göttingen, Germany.
  27. Sheldrick, G.M. (1997). SHELXTL-97, Program for Crystal Structure Refinement. University of Göttingen: Göttingen, Germany.
  28. Nakamoto, K. (1978). Infrared and Ramen Spectra of Inorganic and Coordination Compounds. 3rd ed.; John Wiley and Sons: New York, NY, USA, Volume 1, pp. 359-368.
  29. Wang, L.H., Tai, X.S. (2016). The Synthesis and Crystal Structure of Two New Hydrazone Compounds. Crystals, 6: 57
  30. Borah, B.J., Borah, S.J., Saikia, L., Dutta, D.K. (2014). Efficient Three-component Coupling Reactions Catalyzed by Cu0-nanoparticles Stabilized on Modified Montmorillonite. Catal. Sci. Technol., 4: 1047-1054.
  31. Liu, L.L., Tai, X.S., Zhang, N.N., Meng, Q.G., Xin, C.L. (2016). Supported Au/MIL-53(Al): a reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine. Reac. Kinet. Mech. Catal., 119: 335-348.
  32. Liu, L.L., Tai, X.S., Zhou, X.J., Liu, L.J. (2017). Synthesis, Post-modification and Catalytic Properties of Metal-organic Framework NH2-MIL-53(Al). Chem. Res. Chinese University, 33(2): 231-238.
  33. Gholinejad, M., Saadati, F., Shaybanizadeh, S., Pullithadathil, B. (2016). Copper Nanoparticles Supported on Starch Micro Particles as A Degradable Heterogeneous Catalyst for Three-component Coupling Synthesis of Propargylamines. RSC Advances. 6: 4983-4991.