Partial Oxidation of Propylene over As Prepared and Acid Enriched Bi$_2$Mo$_{1-x}$W$_x$O$_6$ System

Shambhu S. Parab*, S.J. Naik, A.V. Salker

Department of Chemistry, Goa University, Goa 403 206, India

Received: 16th September 2016; Revised: 1st December 2016; Accepted: 9th March 2017

Abstract

The compounds Bi$_2$Mo$_{1-x}$W$_x$O$_6$ ($x = 0.0, 0.2, \text{ and } 0.4$) were obtained through a Citrate sol-gel process. Thermogravimetric differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques were used for characterization. Reitveld refinement of the XRD data confirmed the crystal structure of all the compositions to be orthorhombic, having Pca$_2$1 space group. XPS studies indicated the presence of +6 as well as +4 oxidation state for Mo. Surface acid enrichment of all the catalysts was done and monitored by NH$_3$-TPD studies. Partial oxidation of propylene was studied over all the compounds. The W doping was found to increase the catalytic activity. Moreover, as-prepared catalysts and acid enriched catalysts were compared for their catalytic activity wherein, acid-enriched catalysts showed the improved conversion of propylene without hampering the product selectivity profile. Copyright © 2017 BCREC Group. All rights reserved

Keywords: Ammonia TPD; Bi$_2$Mo$_{1-x}$W$_x$O$_6$; Partial oxidation; Structural studies

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.702.197-205

1. Introduction

Bismuth-Molybdenum oxides have garnered great amount of attention due to their wide range of applications. Especially the three phases, α-Bi$_2$Mo$_3$O$_{12}$, β-Bi$_2$Mo$_2$O$_9$, and γ-Bi$_2$MoO$_6$, have remained focal points in the study of partial oxidation of light hydrocarbons like propylene for many years. The mixed metal oxides containing Bi and Mo as base components have been the mainstay of industrial catalysts for partial oxidation [1]. Researchers have thoroughly studied the mixtures of aforementioned three phases as a single catalyst system to study the synergy effects [2,3]. Most of the authors credit γ phase for the oxygen transport [4,5], whereas α and β phases are credited for their possession of more number of active sites for propylene chemisorption [6,7]. Recently Grunwaldt et al. [8] have prepared Bi-Mo oxides by flame pyrolysis with enhanced surface area. They have rated the three phases in the following order β > γ > α, based on their activity for partial oxidation of propylene.

Among the above three phases, γ-Bi$_2$MoO$_6$ is the most studied compound due to its interesting properties such as dielectric capacity, ion conductivity, luminescence and catalysis [9]. Some researchers have claimed Bi$_2$MoO$_6$ to be the least efficient phase for partial oxidation reaction [2,10], but some have labeled it as having activity that is similar to Bi$_2$Mo$_3$O$_{12}$[11,12]. The Bi$_2$MoO$_6$ crystal structure is made up of alter-
nating layers of [BiO$_2$]$^{2+}$ and [MoO$_3$]$^{2+}$, wherein the octahedral MoO$_6$ are linked to each other by corner sharing [13]. The layered structure of Bi$_2$MoO$_6$ is responsible for its high ionic conductivity, which is highest among the three phases [4]. Lattice oxide participation is an important factor which determines the active sites for partial oxidation [14] therefore ionic conductivity of a catalyst is considered very important in these reactions [15]. According to the most accepted mechanism [16], propylene gets chemisorbed on an unsaturated Mo site accompanied by an allylic hydrogen abstraction by a Bi site to form an allyl radical. To this allyl radical, oxygen is inserted, forming acrolein. Inserted mobile oxygen is accepted to be associated with the Mo site. It has been reported earlier in the literature that the energy needed to remove oxygen from the Mo site is very low as compared to the Bi site [17]. Therefore, Mo acts as a channel for the transport of oxygen in the crystal lattice.

Considering the above facts, in the present work W was partially substituted in place of Mo to analyze its influence on structure, chemical environment and physical properties. These effects in turn were expected to influence partial oxidation of propylene. The structural parameters of solid solutions were refined using Reitveld refinement. Grasselli et al. [18] have pointed out that the introduction of NH$_3$ in the feed gas composition along with the propylene and O$_2$ decreased the catalytic performance considerably, this was attributed to the coordination of NH$_3$ to the unsaturated Mo sites thereby decreasing propylene chemisorptions, an unsaturated Mo site in this case acts as an acidic site. In view of this, the compounds were treated with a very dilute mineral acid; this was expected to bring a change in the surface acidic characeristic of the compounds. The surface acidity was duly characterized by the NH$_3$-TPD studies.

2. Materials and Methods

2.1. Materials

AR grade reagents like Bi(NO$_3$)$_3$.5H$_2$O, H$_2$WO$_4$ and (NH$_4$)$_6$Mo$_7$O$_{24}$ were bought from Aldrich. Citric acid was purchased from Thomas-Baker Ltd., while propylene (99.5 % purity) was purchased from Bhoruka Gases Ltd., Bengaluru, India. Whereas H$_2$ (99.97 %), zero air, O$_2$ (>99.5 %), N$_2$ (99.998 %), and Ar (99.9995 %) were purchased from Govind Poy Oxygen Ltd., Goa, India.

2.2. Catalyst preparation

Preparation of Bi$_2$Mo$_{1-x}$W$_x$O$_6$ ($x = 0.0, 0.2, 0.4$) series was carried out by the Pechini method [19]. This method leads to a better homogeneous mixing and minimizes phase segregation as compared to the traditional solid state reaction. Citrate with a hydroxyl and three carboxylate groups form complexes with metal ions through co-ordination and is known to control the microstructure of the materials [20]. Weighed quantities of the required chemicals were dissolved in the aqueous solution of citric acid with stirring, the mixture was heated to 80 °C until a transparent solution was obtained, and ethylene glycol was added to facilitate the polymerization by poly-esterification reaction. Solution was then heated to 90-100 °C with stirring until a clear gel was obtained. The obtained gel was dried at 150 °C for 5 hours. Probable sintering temperature was found out by subjecting the solid precursor to TG-DTA analysis.

The Bi$_2$Mo$_{1-x}$W$_x$O$_6$ ($x = 0.0, 0.2,$ and 0.4) polycrystalline compounds were then obtained by decomposing the carbonaceous precursors by heat treatment at 350 °C for four hours at the heating rate of 3 °C/minute. The samples were further heated to 650 °C for 6 hours to get monophasic compositions. These compounds are called ‘as-prepared’ compounds in the further discussions. Acid enriched catalysts were prepared as reported in our previous work [21] by dipping the catalysts in a solution of 0.005 M HNO$_3$ for 1 hour at ambient temperature. After filtration, the residue was heated at 110 °C for 4 hours and finally at 450 °C for 1 hour in air.

2.3. Catalyst characterization

Thermal studies (TG-DTA) were performed on TG/DTA NETZSCH STA 409 PC instrument. The heating was carried out in air at the rate of 10 °C/min to get an idea of the decomposition of the precursor. The phase identification of the products was done employing RIGAKU ULTIMA IV X-ray diffractometer with Cu-Ka radiation filtered through Ni absorber. The XRD data was refined with Reitveld refinement using Fullprof-2K software package [22]. Surface morphology was examined by using JEOL model 5800LV Scanning electron microscope operating at 300 kV. Surface area measurements were done on SMART SORB 90/91 at 77 K by N$_2$ adsorption. X-Ray photo-electron spectroscopy on selected samples was recorded on ESCA-3 Mark II spectrometer.
NH₃ TPD studies were done on MICROMERITICS AUTOCHEM 2910 setup equipped with a TCD detector.

2.4. Catalytic tests

Partial oxidation of propylene was undertaken in a continuous flow fixed bed glass reactor. Each time, 2.0 g of the compound was sandwiched between the two layers of the quartz wool. The catalyst was activated with oxygen (250 mL/h) in N₂ at 150 °C for half an hour to drive off any adsorbed gases. The activity was determined employing the feed gas compositions of 5 % propylene, 5 % oxygen in nitrogen. The catalytic tests were done in the temperature range from 250 °C to 450 °C. The gas flow rates were controlled by mass flow meters and precision needle valves. Reactants and products were determined employing online gas chromatograph. Propylene, acrolein, acetaldehyde and CO₂ were detected on Flame ionization detector (FID) using Porapak-Q column, whereas CO and O₂ were monitored on Thermal conductivity detector (TCD) using Molecular sieve-13 x column. High purity H₂ and zero air cylinders were used for FID flame. Argon was used as a carrier gas for the GC. Column oven was kept at 140 °C; whereas injector and both the detectors (FID and TCD) were operated at 160 °C.

3. Results and Discussion

3.1. Thermal studies

The TG/DTA profile of Bi₂MoO₆ precursor is shown in Figure 1. The citrate precursor showed mass loss in three distinguishable regions having major exothermic peak at 422 °C. Most of the overall mass loss corresponds to the removal of H₂O and decompositions of the organic matter. The mass loss region from 30-200 °C indicates loss of physisorbed and constitutional water from the precursor. A small endothermic peak at 100 °C is due to the loss of this water. The mass loss in the region from 200-400 °C corresponds to the initial decomposition of organic moieties, which is characterized by an exothermic peak at 284 °C in the DTA curve. The mass loss region from 400 - 530 °C is due to the decomposition of remaining organic matter. The strong exothermic peak at 422 °C is due to the redox decomposition of carboxylate and nitrate moieties leading to the evolution of Carbon oxides and NOx. No signals were observed in TG or DTA curve in the temperature region from 530 to 900 °C. Based on these observations the compounds were finally sintered at 650 °C. A strong endothermic peak observed at 936 °C indicated the melting point of Bi₂MoO₆.

3.2. Structural studies

X-Ray diffractograms of Bi₂Mo₁ₓWₓO₆ (x = 0.0, 0.2, and 0.4) compounds are shown in the Figure 2. The observed d-spacing and peak intensities of the pristine compound matched well with the JCPDS data (Card No. 21-0102). The crystallographic refinement parameters are given in Table 1. A refined data was obtained by varying both profile and structural parameters using Rietveld refinement. The structure having space group, Pca2₁ with a = 5.4822, b = 16.1986, and c = 5.5091 Å was used with the known coordinates of the phase from...
As W6+ ion (60 pm) is not significantly larger in size than Mo6+ ion (59 pm), it was assumed that W substitution will not alter the crystal structure of Bi\textsubscript{2}MoO\textsubscript{6} considerably. Full occupancy was assigned to oxygen and bismuth during the refinement. The occupancy of molybdenum and tungsten was refined considering their stoichiometric amount using Winplotr [22]. Both experimental and calculated profiles of Bi\textsubscript{2}Mo\textsubscript{0.6}W\textsubscript{0.4}O\textsubscript{6} are shown in Figure 3. The corresponding difference in the Fourier map is flat providing an unequivocal verification of the structure. The refinements of these doped compounds are being reported for the first time on polycrystalline materials.

The important observations that can be deduced from the refinement are: (a) the crystal volume has increased linearly with the addition of W, (b) due to W insertion the atomic positions have got altered as compared to pristine Bi\textsubscript{2}MoO\textsubscript{6}, (c) the Mo and W contents are found to be in line with molecular formula of the compound, (c) the occupancies of oxygen in MoO\textsubscript{6} and octahedral WO\textsubscript{6} are found to be low; the oxygen vacancies are expected to be located around MoO\textsubscript{6} and WO\textsubscript{6} octahedra [24].

Table 1. Crystallographic refinement parameters of Bi\textsubscript{2}Mo\textsubscript{1-x}W\textsubscript{x}O\textsubscript{6}

<table>
<thead>
<tr>
<th>Crystallographic parameters</th>
<th>Compositions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bi\textsubscript{2}MoO\textsubscript{6}</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pca2\textsubscript{1}</td>
</tr>
<tr>
<td>a(Å)</td>
<td>5.4835</td>
</tr>
<tr>
<td>b(Å)</td>
<td>16.1955</td>
</tr>
<tr>
<td>c(Å)</td>
<td>5.5045</td>
</tr>
<tr>
<td>V(Å3)</td>
<td>488.839</td>
</tr>
<tr>
<td>CHI**2</td>
<td>3.31</td>
</tr>
</tbody>
</table>

3.3. SEM and XPS studies

The surface area values are reported in Table 2. The surface area did not show a trend as such, but the W inserted compositions showed little higher surface area than pristine Bi\textsubscript{2}MoO\textsubscript{6}. The surface area values obtained are reported to be the characteristic of such compounds [25]. The SEM images of sintered Bi\textsubscript{2}MoO\textsubscript{6} and Bi\textsubscript{2}Mo\textsubscript{0.6}W\textsubscript{0.4}O\textsubscript{6} are shown in Figures 4 (a) and 4 (b), respectively. Both pristine and doped compounds showed porous flake like morphological features.

XPS studies confirmed the presence of all three metal components without any impurities. XPS spectra of Bi\textsubscript{2}Mo\textsubscript{0.6}W\textsubscript{0.4}O\textsubscript{6} are presented in Figure 5. The Bi 4f\textsubscript{5/2} and Bi 4f\textsubscript{7/2} spin-orbit splitting photoelectrons are located at 164.4 and 159.1 eV, respectively as displayed in Figure 5a confirming the presence of Bi3+ in the crystal lattice. Figure 5 (b) shows W 4f\textsubscript{7/2} and W 4f\textsubscript{5/2} spin-orbit splitting photoelectrons from octahedral WO\textsubscript{6} which showed binding energies at 35.20 and 36.60 eV, respectively. A typical Mo 3d spectrum is displayed in Figure 5 (c). The Mo 3d\textsubscript{3/2} binding energy peaks were seen between 232.4 and 235.86 eV denoting Mo6+ species. The peak at 229.4 eV is assigned to the Mo4+, confirming that there are two oxidation states present for molybdenum. Except for
for the occurrence of Mo$^{4+}$, all the above observations are in accordance with the reported XPS studies [25,26]. The occurrence of Mo$^{4+}$ in the composition can be attributed to the residual carbon adhering intimately to the material’s surface, this carbon may get oxidized by taking oxygen from the lattice thus reducing Mo$^{6+}$ in the process.

Figure 5(d) presents XPS peak for the O species, attributed to crystal lattice oxygen and adsorbed oxygen [27,28]. In the literature, XPS is considered to be a potent means to estimate oxygen mobility in the crystal lattice [29]. Among the three types of oxygen reported, I, II and III, Type I oxygen has lowest binding energy (~530 eV) and is bonded strongly to the

Figure 4. SEM Photographs of the compounds prepared at 650 °C (a) Bi$_2$MoO$_6$ and (b) Bi$_2$Mo$_{0.6}$W$_{0.4}$O$_6$

Figure 5. High resolution core level XPS spectra of Bi$_2$Mo$_{0.6}$W$_{0.4}$O$_6$ (a) Bi 4f, (b) Bi 5d, W 4f (c) Mo 3d (d) O 1s.
metal ions, type II is the oxygen which has highest binding energy (~533 eV) and is weakly bonded to the oxide surface whereas the type III oxygen with intermediate binding energy is considered as the measure of oxygen mobility. Broadening of the XPS spectra towards the higher binding energy values is indicative of decrease in the valence electron density around oxygen making its bonding with the Mo or W weak rendering more mobility to the lattice oxygen. As can be seen from the Figure 5 (d) the broadened XPS spectra indicate the presence of mobile oxygen species. This phenomenon is reported earlier by Rangel et al. [25] for similar compositions such as Bi$_2$Mo$_{0.75}$W$_{0.25}$O$_6$ in explaining its enhanced catalytic activity for CO oxidation.

3.4. NH$_3$-TPD studies

NH$_3$ is used as a basic probe to elucidate the surface acid character of as prepared and acid enriched compounds. Figure 6 displays NH$_3$ TPD studies on as prepared and acid enriched catalysts. As-prepared catalysts showed three distinct desorption peaks: (i) up to 300 °C, (ii) between 350-475 °C, and (iii) beyond 475 °C. These can be considered as weak, mild, and strong acidic sites, respectively. The first peak showed higher intensity than the rest of the peaks observed at higher temperatures suggesting higher number of weak acid sites. In case of the acid enriched catalysts a steadfast distinction among the acidic sites was not observed, a very small hump in the weak acid region was observed followed by a broad and a relatively intense desorption of NH$_3$ covering the temperature range from 250 to 500 °C signaling a considerable decrease in the weak acidic sites and an increase in the mild and strong acidic sites. This observation proves that the acid enrichment has altered the surface acidic character of the catalysts.

3.5. Catalytic activity

The propylene to oxygen molar ratio used in this work was 1:1 which is stoichiometric for the partial oxidation of propylene to acrolein. Propylene conversion and product distribution over the as prepared catalysts is summarized in the Table 3. In case of all the catalysts the conversion increased with the increase in temperature. Significant propylene conversion was observed at temperatures higher than 300 °C on all the catalysts. Bi$_2$MoO$_6$ based catalysts are known to provide oxygen from the lattice for oxidation and at the same time harness oxygen from the feed gas to get re-oxidized [1]. The rate of this cycle is faster at higher temperatures and therefore, the higher yield of oxygenated products at higher temperatures.

The W-inserted catalysts were found to give better conversion than pristine Bi$_2$MoO$_6$. Among the prepared catalysts, Bi$_2$Mo$_{0.6}$W$_{0.4}$O$_6$ showed highest propylene conversion. The mobility of oxygen atoms on catalytic surface should be greater in number for better catalytic partial oxidation. When slightly bigger W ion replaces Mo from Bi$_2$MoO$_6$ it is expected to increase the cell volume which is aptly supported by Reitveld refinements. The increase in the cell volume in turn has led to the weakening of Mo–O bond. This has helped for the easy removal of oxygen from the catalyst surface to form the partially oxygenated species like

![Figure 6. Ammonia temperature programmed desorption studies on (a) as prepared Bi$_2$Mo$_{0.6}$W$_{0.4}$O$_6$, (b) acid enriched Bi$_2$Mo$_{0.6}$W$_{0.4}$O$_6$](image)

![Figure 7. Catalytic activity results of the as prepared Bi$_2$Mo$_{1-x}$W$_x$O$_6$ catalysts for partial oxidation of propylene at different temperatures](image)
acrolein. Also in the XPS studies, the broadened O1s spectra have indicated the presence of mobile oxygen in the crystal lattice.

As observed from the Figure 8, all the acid enriched compounds gave higher propylene conversion than as prepared compounds. Product distribution over acid enriched compounds did not differ significantly from the as prepared compounds. The trend observed among the three catalysts for the propylene catalytic conversion was same as that for as prepared compounds. Maximum propylene conversion of 65% was observed in the case of acid enriched Bi$_2$Mo$_{0.6}$W$_{0.4}$O$_6$. The higher conversion therefore points at the increased adsorption of propylene on the acid enriched surface. As the propylene oxidation starts above 300 °C mark it is essential to have a good number of adsorptive sites of sufficient strength on the catalyst surface for the better conversion. In these regards the increased amount of mild and strong acidic sites on acid enriched catalysts have played a major role in the increased adsorption of propylene leading to an improved conversion which is aptly supported by NH$_3$-TPD studies. It must be also noted that the strong acidic sites can cause prolonged stay of the oxygenated compounds on the surface leading to further oxidation to carbon oxides resulting in the fall of selectivity towards the desired product, i.e. acrolein. In the present case the selectivity was not altered due to the increased surface acidity which proves that the surface acid enrichment has only increased the adsorptive sites on the surface without having any adverse effect on the selective oxidation.

4. Conclusions

Phase pure oxides were obtained by simple Pechini process. The orthorhombic Pca$_2$1 structure was maintained in all the cases as deduced using Rietveld method. W insertion has slightly increased the cell volume linearly. Porous, flake like morphology was confirmed from the SEM micrographs. XPS study confirmed the presence of expected oxidation states for all the elements except for the occurrence of Mo(IV). The broad O1s spectrum hinted towards the presence of mobile oxygen in the crystal lattice. The increase in the number of surface acidic sites after acid enrichment is aptly supported by NH$_3$-TPD measurements. W insertion in Bi$_2$MoO$_6$ increased the catalytic performance. Moreover, the catalytic activity of Bi$_2$Mo$_{1-x}$W$_x$O$_6$ was found to be sensitive to the presence of surface acidic sites as acid enrichment has increased the catalytic conversion. Selectivity profiles of acid enriched catalysts were unaltered from as prepared compounds proving that the acid treatment has only affected the adsorptive sites on the surface without hampering the selectivity towards acrolein.

Acknowledgements

Authors are grateful to UGC-BSR & CSIR, New Delhi, India for the financial support.

Table 3. Product distribution for propylene oxidation over as prepared Bi$_2$Mo$_{1-x}$W$_x$O$_6$ (x=0.0, 0.2, 0.4)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Temperature (°C)</th>
<th>Propylene Conversion (%)</th>
<th>Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acrolein</td>
</tr>
<tr>
<td>Bi$_2$MoO$_6$</td>
<td>400</td>
<td>15.0</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>28.0</td>
<td>95.0</td>
</tr>
<tr>
<td>Bi2Mo${0.8}$Mo$_{0.2}$O$_6$</td>
<td>400</td>
<td>25.5</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>37.5</td>
<td>92.0</td>
</tr>
<tr>
<td>Bi2Mo${0.6}$W$_{0.4}$O$_6$</td>
<td>400</td>
<td>36.3</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>47.2</td>
<td>94.0</td>
</tr>
</tbody>
</table>
References

Copyright © 2017, BCREC, ISSN 1978-2993

