The study presents the dry reforming of methane using natural Kaolin silica as catalyst support. The silica-supported LaNiO₃ perovskite catalysts (20LaNiO₃/SiO₂ and 40LaNiO₃/SiO₂) and bulk LaNiO₃ catalyst were synthesized by auto-combustion method. The resulting catalysts were characterized by X-ray diffraction (XRD), N₂ adsorption-desorption isotherm measurement, scanning electron microscopy (SEM) and temperature-programmed reduction (TPR). After reduction at 700 °C, they were used as catalysts for the reaction of dry reforming of methane into synthesis gas at atmospheric pressure at 800 °C. The reduced 40LaNiO₃/SiO₂ exhibited high catalytic activity. This result was attributed to the small Ni metallic particles obtained from the reduced perovskite highly dispersed on the support and the good reducibility. The increase of reduction temperature at 800 °C resulted in a further enhancement of the catalytic performance of 40LaNiO₃/SiO₂ catalyst.
metal catalysts [5,6]. Because of the availability of Ni metal and for economic reasons, it is more desirable, from the industrial point of view, to develop Ni-based catalysts. However, the main problem is the rapid deactivation of the Ni-based catalysts due to a strong carbon deposition and sintering of metal particles [7].

It is reported that the insertion of nickel into a well-defined structure, like the perovskites [8], hexaaluminates [9], spinels [10] or in a solid solutions [11], can reduce its deactivation. In dry reforming reaction, the active site is metallic transition metal [12]. The mixed-oxide of perovskite type (ABO₃) as catalyst precursor allows after reduction the formation of small metal particles highly dispersed at the surface of a basic support. This small particle size reduces carbon formation and improves the activity and stability of the catalyst [13]. A well-known example is the reduction of a LaNiO₃ perovskite precursor to form Ni/La₂O₃. Previous reports suggested that these materials are active for dry reforming [14,15]. However, the heat treatment of these oxides generally leads to the formation of catalysts with low specific surface area (generally below 10 m².g⁻¹) [16,17], which limits the potential application of these oxides. Many different procedures, including co-precipitation [17], sol-gel [18], Pechini [19], auto-combustion synthesis [20], are proposed in the literature to produce perovskite with smaller crystal size and higher surface area. However, most of the synthesis method allow producing crystal size between 15 nm and 25 nm. Consequently, surface area remains limited. One way to solve this problem and to generate nanocrystals is to disperse the perovskite-type oxide on a support which possesses a high specific surface area and thermal stability, and prevents the sintering of the metal [21,22]. Ordered, silica mesostructures are intrinsically preferred catalyst supports due to their high specific surface area and large pore size. In addition, the confined space inside the pore channels will aid the well-controlled formation of nanoparticles of catalytically active materials. Rivas et al. [21] synthesized a series of Ni-based perovskite-type oxides LaNiO₃, La₉₀₅Ca₄₀₅NiO₃, and La₉₅Ca₅NiO₃, as a catalyst precursors in highly ordered mesoporous SBA-15 silica support. The incorporation of the oxides into the mesoporous silica resulted in enhanced metal–support interaction that then increased the Ni reduction temperature.

Improved conversions and selectivities were observed at low temperature and no significant loss in CH₄ conversion was reported at 700 °C for 24 h in the case of mesoporous catalysts. Wang et al. [23] synthesized LaNiO₃ perovskite catalysts supported on various silica-based mesoporous supports (LaNiO₃/SBA-15, LaNiO₃/MCM-41 and LaNiO₃/SiO₂) with different pore structures. Their catalytic performances were measured in methane dry reforming. LaNiO₃/MCM-41 exhibited the highest initial catalytic activity, owing to higher Ni dispersion, while LaNiO₃/SBA-15 was superior to LaNiO₃/MCM-41 in the long-term stability (60 h), which could be due to the stable silica matrix limiting the agglomeration of nickel species.

In comparison, the carbon deposition was responsible for the significant decrease in catalytic activity of the LaNiO₃/SiO₂ sample. Dacquin et al. [24] used an in situ auto-combustion synthesis route to produce nanoparticle nickel oxide (~3 nm). They prepared highly dispersed metallic Ni nanoparticles from LaNiO₃/SBA nanoprecursor reduction. The catalytic performance for syngas production was doubled compared to bulk LaNiO₃. These materials were found to be stable at 700 °C for 48 h. Moradi et al. [25] studied the effects of Ni loading and preparation methods on the performance of perovskite-type oxides (LaNiO₃) dispersed on γ-Al₂O₃ for the CO₂ reforming of CH₄ into synthesis gas. The catalyst with 20 wt% Ni prepared by the impregnation method using ethanol as solvent and citric acid exhibited the best activity and stability at 800 °C for 75 h time-on-stream. Recently, natural clays stand as interesting catalytic supports in dry reforming of methane reaction, since they are naturally available and low-cost materials. Akri et al. [26] used natural illite clay as catalyst support for nickel for the autothermal reforming of methane. The presence of lanthanum markedly improved the catalytic stability for 24 h of reaction at 800°C. Liu et al. [27] used Tunisian natural clay as support to prepare nickel based catalysts modified with Fe and Cu for dry reforming of methane. They found that the Cu-modified catalyst exhibited a good activity at 850°C.

In the present work, we report the use of natural silica obtained from siliceous by-product of Algerian kaolin as support of perovskite-type oxides with different LaNiO₃ loadings. The aim of the study was to investigate the catalytic performances of these materials with respect to the dry reforming of methane into synthesis gas.

The by-product of kaolin is rich in silica easily available of low cost and exhibits a good
thermal stability, needed for methane dry reforming reaction. The use of this natural silica as catalytic support has never been reported before.

2. Materials and Method

2.1 Materials

Siliceous by-product of Algerian kaolin used as the raw material to produce the silica support. The chemicals used were as follows: lanthanum nitrate hexahydrate (99.9% La(NO₃)₃.6H₂O), nickel nitrate hexahydrate (99 % Ni(NO₃)₂.6H₂O), glycine (99% C₆H₄N₂O₂), sulfuric acid (96% H₂SO₄), Hydrochloric acid (37% HCl) and distilled water. All reagents were purchased from Sigma-Aldrich.

2.2 Catalysts Preparation

2.2.1 Silica support

The starting material was siliceous by-product of kaolin. Its composition is detailed in Table 1. It is rich in silica (about 92%). The preparation of silica from siliceous by-product of kaolin has been already reported [28]. In order to remove the iron oxides, a batch (250 g) of by-product was stirred in 500 mL of H₂SO₄ (4 M) over night at room temperature. Stirring was maintained until a heterogeneous mixture (liquid and paste) was obtained. This mixture was washed with an abundant quantity of distilled water and then dried at 100 °C for 24 hours. The obtained product was ground to obtain a fine powder to which a mass of 52.29 g of sodium carbonate has been added. The solid mixture was then calcined at 1000 °C. After calcination, a quantity (10 g) of the obtained compound was dissolved in 500 mL of hot distilled water (50 °C) in order to prepare hydrated sodium silicates. To remove sodium, hydrochloric acid solution (2 M) was then added. The obtained gel SiO₂ was washed several times with distilled water until the absence of ions Cl⁻ in the washing water and then dried at 100 °C for 24 hours.

2.2.2 Perovskite supported catalysts

A series of lanthanum-nickel supported mixed oxides xLaNiO₃/SiO₂ (where x is the weight loading of LaNiO₃ in the catalyst and is fixed at 20 and 40 wt %) were synthesized by the in-situ auto-combustion procedure [29]. In a first step, nitrate precursors with a mass ratio of lanthanum nitrate to nickel nitrate of 3:2 were dissolved in a limited volume of distilled water (20 mL). After complete dissolution at room temperature, glycine was then added to the nitrate solution at a NO₃/glycine molar ratio of 1, the solutions were mixed and agitated constantly for about 2h. The freshly calcined support (1.0 g) was thereafter slowly impregnated with this solution. After 2 h of agitation, the temperature of the mixture increased up to 100 °C until complete evaporation of water, and a powder was obtained. Then, glycine auto-ignition occurred on increasing the temperature to 280 °C. The powder obtained was finally calcined at 700 °C (ramp 1 °C.min⁻¹) for 4h for residual carbonaceous elimination. The catalysts nomenclature is given as shown: 20LaNiO₃/SiO₂ and 40 LaNiO₃/SiO₂ samples contained respectively 20 wt. % and 40 wt. % of LaNiO₃. The bulk perovskite LaNiO₃ was prepared as reference using the same procedure (auto-combustion).

2.2 Catalyst Characterization

The synthesized solids were characterized by X-ray powder diffraction (XRD) at 2θ between 10° and 80° with a 0.020° step and an acquisition time of 0.80 s at each step for crystalline phase detection, using a Bruker AXS D8 Advanced equipment (Cu-Kα = 0.15406 nm). The crystalline phases were identified by comparing with the database. The crystallite size was calculated from the full width at half maximum of the most intense diffraction peaks using Scherrer’s equation. Textural properties were obtained by N₂-sorption experiment at −196 °C on a Micromeritics ASAP 2420 apparatus. Specific surface areas were calculated according to BET procedure. Prior to analysis, samples were out gassed at a temperature of 250 °C. The BJH method was applied for determination of pore volume and pore size distribution. The supported catalysts and the support morphologies were observed by scanning electron microscopy (SEM) using a Philips XL-30 ESEM microscope.

Table 1. Chemical composition and calcination losses of siliceous by-product of kaolin [28]

<table>
<thead>
<tr>
<th>Oxides</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>Na₂O</th>
<th>MgO</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (%)</td>
<td>92.72</td>
<td>3.42</td>
<td>0.71</td>
<td>0.20</td>
<td>0.05</td>
<td>0.14</td>
<td>0.69</td>
<td>0.09</td>
<td>0.09</td>
<td>1.30</td>
<td>99.41</td>
</tr>
</tbody>
</table>

Copyright © 2019, BCREC, ISSN 1978-2993
Temperature programmed reduction (TPR) was carried out for temperatures ranging from 50 to 800 °C with a Micromeritics Autochem II 2920 instrument using 50 mg of catalyst. Catalysts were reduced under 10% H₂ balanced with Ar at flow rate of 50 mL.min⁻¹ from 50 to 800 °C with heating rate of 5 °C.min⁻¹. Before analysis, the catalysts were pretreated for one hour at their calcination temperature (700 °C) under oxygen (30 mL.min⁻¹) in order to activate the catalyst by removing water and impurities deposited on the surface. The consumption of hydrogen was followed by TCD.

2.3 Catalytic activity

The catalysts performances were evaluated at atmospheric pressure in a U quartz reactor (internal diameter of = 6.0 mm). All samples were tested for methane dry reforming reaction, after an in-situ reduction under pure hydrogen (10 mL.min⁻¹) at 700 °C for 1 h. The mass of catalyst was adjusted to 10 mg of LaNiO₃ for catalytic comparison. The SiO₂ support alone was inactive at 800 °C. After stabilization of the reacting flow (CH₄/CO₂ = 1/1, at a GHSV of 600 L.h⁻¹.g⁻¹), the activity was measured each 30 min for 4 hours at reaction temperature of 800 °C. The reactants (CH₄ and CO₂) and products (CO and H₂) were analyzed on line using TCD gas chromatograph equipped with a Carbosieve column. The catalytic performance was evaluated by CH₄ and CO₂ conversions, CO and H₂ yields and H₂/CO molar ratio and was calculated using Equations (1-5).

\[
\text{Conversion}(X_{\text{CH}_4} \%) = \frac{n_{\text{CH}_4,\text{in}} - n_{\text{CH}_4,\text{out}}}{n_{\text{CH}_4,\text{in}}} \times 100 \quad (1)
\]

\[
\text{Conversion}(X_{\text{CO}_2} \%) = \frac{n_{\text{CO}_2,\text{in}} - n_{\text{CO}_2,\text{out}}}{n_{\text{CO}_2,\text{in}}} \times 100 \quad (2)
\]

\[
\text{Yield}(Y_{\text{H}_2} \%) = \frac{n_{\text{H}_2,\text{out}}}{2n_{\text{CH}_4,\text{in}}} \times 100 \quad (3)
\]

\[
\text{Yield}(Y_{\text{CO}} \%) = \frac{n_{\text{CO},\text{out}}}{n_{\text{CH}_4,\text{in}} - n_{\text{CO}_2,\text{in}}} \times 100 \quad (4)
\]

\[
Molar \text{ ratio}(H_2 / CO) = \frac{n_{\text{H}_2,\text{produced}}}{n_{\text{CO},\text{produced}}} \quad (5)
\]

3. Results and discussion

3.1 Physicochemical characterization

Table 2 shows the specific surface areas of the catalysts after synthesis. The specific surf-

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Pore Diameter (nm)</th>
<th>NiO Crystal size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaNiO₃</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>SiO₂</td>
<td>56</td>
<td>0.108</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>20LaNiO₃/SiO₂</td>
<td>7</td>
<td>0.016</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td>40LaNiO₃/SiO₂</td>
<td>32</td>
<td>0.023</td>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

Figure 1. N₂ adsorption–desorption isotherms and pore size distribution obtained for SiO₂ support, 20 LaNiO₃/SiO₂ and 40LaNiO₃/SiO₂ catalysts.
face area of the SiO₂ support is 56 m².g⁻¹. This value is relatively low for a support. High calcination temperature might be the reason for this low surface area [16]. The specific surface area of the support decreased after impregnation with the mixed oxide. This decrease is not proportional to the loading of the mixed oxide. Low specific surface area is calculated for 20LaNiO₃/SiO₂ (7 m².g⁻¹) catalyst. The low surface area could be related to the high particles size (54 nm) [30]. However, a relatively high surface area is observed for 40LaNiO₃/SiO₂ (32 m².g⁻¹) compared to the bulk perovskite LaNiO₃ (9 m².g⁻¹). On the other hand, a decrease in the pore volume and pore size is significant, probably due to the partial blockage of the pores originally present by the mixed oxides [24]. The isotherms are different for the support and the supported perovskite catalysts (Figure 1). The SiO₂ support presents a well defined hysteretic loop characteristic of type IV isotherms according to BDDT (Brunauer, Deming, Deming and Teller) classification, which indicates that the support is mesoporous. The similar isotherm was observed for Ce-promoted illite clay based catalyst [31]. However, for the supported catalysts 20LaNiO₃/SiO₂ and 40LaNiO₃/SiO₂ the isotherms seem to be likely of type-II. These results agree with those reported by Akri et al. [31]. The corresponding pore size distribution (Figure 1) confirms the mesoporosity of the support, as highlighted by pore size distribution at 16 nm.

The XRD patterns of the catalysts are displayed in Figure 2. The XRD patterns of the bulk catalyst LaNiO₃ shows the main diffraction lines at 2θ = 31.9°, 45.7°, and 58.7°, characteristic of the rhombohedral structure of LaNiO₃ (JCPDS file n° 01-088-0633), which confirms the presence of a perovskite-type structure. The perovskite structure is also observed for the supported catalyst 20LaNiO₃/SiO₂ with low peak’s intensity. These characteristic peaks are not observed in the XRD patterns of 40LaNiO₃/SiO₂, therefore, the perovskite structure was not formed. However, for this catalyst, two phases of single oxide are formed which correspond to La₂O₃ and NiO. The XRD pattern shows the main diffraction peaks at 22.4°, 26.7°, 29.7°, and 52.6° characteristic of La₂O₃ cubic structure (JCPDS file n° 03-065-3185) and two main diffraction peaks at 37.2°, 43.1°, and 62.8° characteristic of the NiO cubic structure (JCPDS n° 01-089-7130). These two phases (NiO and La₂O₃) are also observed for the 20LaNiO₃/SiO₂ catalyst in addition to the perovskite. The XRD pattern of the silica support shows main reflections at 20.9°, 26.7°, 36.6°, 42.5°, 50.2°, and 60.1° characteristic of SiO₂ hexagonal structure. The presence of quartz is also detected (JCPDS n°01-085-0504) in the supported catalysts. We notice that some characteristic peaks of cubic NiO and La₂O₃ overlap with those of hexagonal SiO₂.

The 20LaNiO₃/SiO₂ catalyst has a low specific surface area with a large NiO particle size. This result can be explained by the formation of the mixed oxide LaNiO₃ which is generally well crystallized, which has a low specific surface area and the presence of the free oxide NiO. This free oxide promotes the formation of

![Figure 2](image2.png)

Figure 2. X-ray patterns of studied catalysts: LaNiO₃ bulk (A), 20LaNiO₃/SiO₂ (B), 40LaNiO₃/SiO₂ (C) and SiO₂ support (D). (●) SiO₂, (●) LaNiO₃, (▲) NiO, (■) La₂O₃

![Figure 3](image3.png)

Figure 3. SEM micrograph obtained for SiO₂ (a,b), 40LaNiO₃/SiO₂ (c) and 20LaNiO₃/SiO₂ (d).
large particles, especially when the interactions with the support are weak. On the other hand, for the catalyst 40LaNiO$_3$/SiO$_2$, the formation of the mixed oxide was not recorded and the formation of NiO is well dispersed at the surface of the support.

SEM micrographs of calcined samples are illustrated in Figure 3. The silica powder appears under small particles form with irregular shape. These particles are bonded to each other to form small aggregates (Figure 3a and 3b). After impregnation with the mixed oxide LaNiO$_3$, the morphology changed as shown in Figure 3c and 3d. The supported catalyst 40LaNiO$_3$/SiO$_2$ appears in the form of nanoscale particles irregularly dispersed on the surface of SiO$_2$ silica which present some porosity (micropores). While for the 20 LaNiO$_3$/SiO$_2$ catalyst, it is noted that on the zone observed, the micrographs reveal the formation of agglomerates with irregular form.

3.2 Temperature-Programmed Reduction (TPR)

Reducibility of the different solids was studied in order to ensure a sufficient reduction pretreatment before catalytic test. Numerous authors reported that the active species in dry reforming of methane are the metallic Ni0 particles present on the surface of the catalyst [12,32]. The reduction of the bulk LaNiO$_3$ sample shows two main steps (Figure 4b), corresponding to the reduction of the trivalent nickel Ni$^{3+}$ into divalent nickel Ni$^{2+}$ at low temperature (~300°C) with formation of La$_2$Ni$_2$O$_5$ brownmillerite phase followed by the reduction of Ni$^{2+}$ in La$_2$Ni$_2$O$_5$ to its metallic state Ni0 at high temperature (~435 °C). The intensity of the second peak equals twice that of the first peak indicating the formation of LaNiO$_3$. The reduction of Ni$^{3+}$ in LaNiO$_3$ to Ni0 is summarized by two following reactions:

$$2\text{LaNiO}_3 + \text{H}_2 \rightarrow \text{La}_2\text{Ni}_2\text{O}_5 + \text{H}_2\text{O}$$
$$\text{La}_2\text{Ni}_2\text{O}_5 + 2\text{H}_2 \rightarrow \text{La}2\text{O}_3 + 2\text{Ni} + 2\text{H}_2\text{O}$$

The supported catalysts exhibit different TPR profiles with respect to the bulk perovskite LaNiO$_3$. The TPR profiles of 20LaNiO$_3$/SiO$_2$ (Figure 4a) presents three main reduction zones that characterize three steps of reduction. The first one occurs at around 340°C, which is related to the reduction of NiO to Ni0. These species are present on the perovskite surface. Rudolfo et al. also reported a peak of reduction at 573 K, which is attributed to NiO on the surface [33]. The second step is observed at ~ 500 °C, due to the reduction of Ni$^{3+}$ in the perovskite to Ni$^{2+}$ which generates the formation of the La$_2$Ni$_2$O$_5$ phase, this last being reduced at ~ 630 °C as indicates the third peak. These reduction steps are carried out according to the following reactions:

$$\text{NiO} + \text{H}_2 \rightarrow \text{Ni}^0 + \text{H}_2$$
$$2\text{LaNiO}_3 + \text{H}_2 \rightarrow \text{La}_2\text{Ni}_2\text{O}_5 + \text{H}_2\text{O}$$
$$\text{La}_2\text{Ni}_2\text{O}_5 + 2\text{H}_2 \rightarrow \text{La}_2\text{O}_3 + 2\text{Ni} + 2\text{H}_2\text{O}$$

Comparing the reduction profiles to those of LaNiO$_3$ bulk, we can see that the peaks related to the reduction of perovskite are small with low intensity and shifted to higher temperature, indicating that the reduction of perovskite becomes difficult because of the strong interaction between perovskite and silica support [24]. The TPR profile of 40LaNiO$_3$/SiO$_2$ is totally different. It shows one large reduction zone at ~ 400 °C corresponding to the reduction of Ni$^{2+}$ to Ni0 of NiO species on the catalyst surface. As it is observed, this peak of reduction is close to the second peak of reduction of LaNiO$_3$.

Figure 4. TPR profiles of 20LaNiO$_3$/SiO$_2$ (a), LaNiO$_3$ bulk (b) and 40LaNiO$_3$/SiO$_2$ (c) catalysts.

Figure 5. XRD patterns of reduced 40LaNiO$_3$/SiO$_2$ catalyst at 800 °C.
bulk perovskite. La₂O₃ is not reducible. For this supported catalyst, reduction profiles move to higher temperature. It is believed that reducibility of NiO species, in supported nickel catalysts, is highly affected by the nature of metal-support interaction [34,35]. Generally, when the interactions between NiO and support (SMSI) are strong, the main peak of reduction shifts to higher temperature, the reduction becomes very difficult, thus decreasing Ni reducibility. It also suggests the existence of better Ni dispersion comparing to non supported catalyst, but when the interactions (SMSI) are weak, the peak shifts to lower temperature; the reduction of metal becomes easier, thus increasing the Ni reducibility [24,27].

This study is in good correlation with the XRD studies confirming the presence of different phases. XRD patterns recorded on 40LaNiO₃/SiO₂ reduced catalyst at 800 °C are reported in Figure 5. The presence of reduced Ni⁰ is evidenced by reflections at 2θ = 44.45° and 52°. Ni⁰ crystal sizes were calculated applying Scherrer equation to the diffraction peak appearing at 44.45° of pure Ni(111) reflecting plane. The calculated value was around of 11 nm.

3.3 Catalytic Activity

After reduction at 700 °C for 1 h under hydrogen, the prepared catalysts were tested in dry reforming of methane at 800 °C in a CO₂/CH₄ ratio equal to 1, under atmospheric pressure. The effect of the support and the LaNiO₃ loading on the catalytic properties of the perovskite were investigated. The CH₄ and CO₂ conversions as well as the CO and H₂ yields of reduced supported perovskite and bulk LaNiO₃ catalysts are shown in Figure 6. The 20LaNiO₃/SiO₂ supported catalyst does not show any catalytic activity under reaction condition. The reason may be the low surface area and large particles size 54 nm (Table 1) or the

![Figure 6. Catalytic performance of LaNiO₃, 20LaNiO₃/SiO₂, and 40LaNiO₃/SiO₂ reduced catalysts at 700°C in DRM reaction at 800 °C.](image)
low reducibility of the catalyst as shown by TPR profiles. These results are not in agreement with those obtained with 20LaNiO$_3$/SBA supported catalyst [24]. The authors reported that the catalytic performance in dry reforming of methane of this catalyst was much better than that obtained with the bulk LaNiO$_3$. The catalyst had high surface area and Ni0 nanoparticles size of about 3 nm. Liu et al. [36] showed that the addition of Al and Mn to Fe modified natural clay supported Ni catalysts increased the specific surface area and promoted Ni dispersion. Al-promoted catalysts improved the Ni reducibility and presented the best catalytic performance in dry reforming of methane compared to La and Mn-promoted catalysts. However, the 40LaNiO$_3$/SiO$_2$ catalyst showed higher catalytic activity than the bulk perovskite LaNiO$_3$.

In this case, the methane and CO$_2$ conversions remained constant at around 50% (CH$_4$) and 65% (CO$_2$) after 3 h of time on stream. During the reaction, the conversion of CO$_2$ is higher than the conversion of methane, even the yield of CO is higher than that of H$_2$, the values of H$_2$/CO ratio near to 0.8 less than 1 and the formation of water, suggesting that besides methane dry reforming reaction, reverse water-gas shift reaction (RWGS: CO$_2$ + H$_2$ → CO + H$_2$O) is also occurring. In general, CO$_2$ reforming of methane is typically accompanied by the simultaneous occurrence of a RWGS reaction [22,31]. The yield of CO is higher than that of H$_2$ (Figure 6), this confirms the presence of parallel reactions during dry reforming of methane. Some of them lead to carbon formation which leads to the deactivation of the catalyst. However, the presence of basic support such as La$_2$O$_3$ can improve the resistance to coke deposition [37]. We attribute the superior performance of 40 LaNiO$_3$/SiO$_2$ catalyst to the presence of nanocrystallites of nickel (15 nm Table 1), highly dispersed on the surface of silica support. Rivas et al. [21] reported that the LaNiO$_3$/SBA-15 catalyst had crystal size of about 9 nm and good activity for DRM. Moradi et al. [25] attributed the better activity of LaNiO$_3$/Al$_2$O$_3$ for DRM to high dispersion of metallic nickel crystals (14-50 nm) on the Al$_2$O$_3$ support. The good reducibility shown by high H$_2$ consumption and large peak of the 40 LaNiO$_3$/SiO$_2$ catalyst could be also the reason for its high catalytic efficiency in dry reforming of methane. Amin et al. [38] have found that Er-promoted Ni/Al$_2$O$_3$ catalyst showed more reducibility, which is the reason for its high catalytic efficiency in dry reforming of methane.

In order to confirm the effect of reducibility on the performance of 40LaNiO$_3$/SiO$_2$ catalyst, reduction temperature at 800 °C was investigated. Figure 7 shows the results obtained in dry reforming of methane reaction experiments. From these results, we note that the increase of reduction temperature at 800 °C improves the catalytic activity of the catalyst. Methane and carbon dioxide conversions are higher than the ones obtained at reduction temperature of 700 °C. The conversions were maintained at around 55% and 70%, respectively for CH$_4$ and CO$_2$ after 3h of reaction. The H$_2$/CO ratio is slightly lower than unity. The CO$_2$ conversion, following the same trend, remains higher than the CH$_4$ conversion. This is mainly due to the occurrence of the reverse water gas shift reaction. This activity may be explained by the small nickel size generated after reduction at 800 °C which are highly dispersed at the surface of the support. Liu et al. [36] have found that the reduction temperature had a big influence on Ni crystal size. The natural clay based Ni-containing catalysts reduced at 900 °C had a smaller Ni crystal sizes than those reduced at 800 °C. No deactivation of the catalyst was observed during time on stream. According to Gallego et al. [20,39,40], the presence of La$_2$O$_3$ can improve the catalytic activity with increasing the basic sites, the surface Ni content and it can participate in dry reforming of methane by reacting with CO$_2$ to form La$_2$O$_3$CO$_3$ phase, able to gasify the carbon deposits formed to produce CO.

Figure 7. Catalytic performance of 40LaNiO$_3$/SiO$_2$ after reduction at 800 °C in DRM reaction at 800 °C.
4. Conclusions

In the present work, we investigated the effect of the natural support on the activity of a LaNiO\(_3\) perovskite catalyst. The LaNiO\(_3\)/SiO\(_2\) supported catalysts and LaNiO\(_3\) were prepared by in-situ auto-combustion procedure. Their activity was tested in the dry reforming of methane (DRM) at 800 °C. The results showed that the use of kaolin silica as support plays a role of promoter in the physico-chemical and catalytic properties of the perovskite catalyst. It improved the physico-chemical and catalytic properties of the mixed oxide catalyst. Compared to the LaNiO\(_3\) bulk, the 40LaNiO\(_{3-x}\)/SiO\(_2\) supported catalyst presented a relatively high surface area (32 m\(^2\).g\(^{-1}\)) and small particle sizes (15 nm). Also, this latter exhibited the highest catalytic activity, which is probably attributed to the small Ni particle size high dispersed on the support and the good reducibility. The increase of reduction temperature at 800 °C results in an enhancement of the Ni dispersion on the silica surface and the high catalytic activity was obtained with 40 LaNiO\(_{3-x}\)/SiO\(_2\) catalyst.

Acknowledgments

The authors gratefully acknowledge assistance from professor Anne Cécile Roger, Director of (Equipe Energie et Carburants pour un Environnement Durable ICPEES-ECPM, UMR CNRS, Strasbourg, France) laboratory for her help in the realization of this work. We thank the members of the laboratory whose conducted characterization analysis and catalytic tests.

References

